Skip to main content
Log in

Response of mode water and Subtropical Countercurrent to greenhouse gas and aerosol forcing in the North Pacific

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950–2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40°N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, Y., Suga, T., and Hanawa, K., 2002. Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. Journal of Physical Oceanogra phy, 32: 2299–2311.

    Article  Google Scholar 

  • Bao, Z., Wen, Z., and Wu, R. G., 2009. Variability of aerosol optical depth over east Asia and its possible impacts. Journal of Geophysical Research, 114, D05203, DOI: 10.1029/2008 JD010603.

    Article  Google Scholar 

  • Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J. C., Ginoux, P., Lin, S. J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R., Lee, H. C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F., 2011. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of Climate, 24: 3484–3519.

    Article  Google Scholar 

  • Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M., Farneti, R., Gnanadesikan, A., Hurlin, W. J., Lee, H. C., Liang, Z., Palter, J. B., Samuels, B. L., Wittenberg, A. T., Wyman, B. L., Yin, J., and Zadeh, N., 2011. The GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. Journal of Climate, 24: 3520–3544, DOI: 10.1175/2011JCLI3964.1.

    Article  Google Scholar 

  • Kobashi, F., Mitsudera, H., and Xie, S. P., 2006. Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogensis. Journal of Geophysical Research-Oceans, 111, C09033, DOI: 10.1029/2006JC003479.

    Article  Google Scholar 

  • Kobashi, F., Xie, S. P., Iwasaka, N., and Sakamoto, T. T., 2008. Deep atmospheric response to the North Pacific oceanic subtropical front in spring. Journal of Climate, 21: 5960–5975.

    Article  Google Scholar 

  • Kubokawa, A., 1997. A two-level model of subtropical gyre and subtropical countercurrent. Journal of Oceanography, 53: 231–244.

    Google Scholar 

  • Kubokawa, A., 1999. Ventilated thermocline strongly affected by a deep mixed layer: A theory for subtropical countercurrent. Journal of Physical Oceanography, 29: 1314–1333.

    Article  Google Scholar 

  • Kubokawa, A., and Inui, T., 1999. Subtropical countercurrent in an idealized ocean GCM. Journal of Physical Oceanography, 29: 1303–1313.

    Article  Google Scholar 

  • Lee, H. C., 2009. Impact of atmospheric CO2 doubling on the North Pacific Subtropical Mode Water. Geophysical Research Letters, 36, L06602, DOI: 10.1029/2008GL037075.

    Article  Google Scholar 

  • Luo, Y., Liu, Q., and Rothstein, L. M., 2009. Simulated response of North Pacific Mode Waters to global warming. Geophysical Research Letters, 36, L23609, DOI: 10.1029/ 2009GL040906.

    Article  Google Scholar 

  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z. C., 2007. Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S. et al., eds., Cambridge University Press, 747–845.

    Google Scholar 

  • Nakamura, H., 1996. A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: Its distribution and formation. Journal of Oceanography, 52: 171–188.

    Article  Google Scholar 

  • Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Jayaraman, A., Leaitch, R., Murphy, D., Nganga, J., and Pitari, G., 2001. Aerosols, their direct and indirect effects. Intergovernmental Panel on Climate Change, Report to IPCC from the Scientific Assessment Working Group (WGI), Cambridge University Press, 289–348.

    Google Scholar 

  • Qiu, B., and Huang, R. X., 1995. Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. Journal of Physical Oceanography, 25: 2374–2390.

    Article  Google Scholar 

  • Suga, T., Hanawa, K., and Toba, Y., 1989. Subtropical mode water in the 137°E section. Journal of Physical Oceanography, 19: 1605–1618.

    Article  Google Scholar 

  • Suga, T., Takei, Y., and Hanawa, K., 1997. Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the subtropical mode water. Journal of Physical Oceanography, 27: 140–152.

    Article  Google Scholar 

  • Suzuki, T., and Ishii, M., 2011. Long term regional sea level changes due to variations in water mass density during the period 1981-2007. Geophysical Research Letters, 38, L21604, DOI: 10.1029/2011GL049326.

    Google Scholar 

  • Takeuchi, K., 1984. Numerical study of the subtropical front and the subtropical countercurrent. Journal of Oceanographical Society of Japan, 40: 371–381.

    Article  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., and Meehl, G. A., 2012. An overview of CMIP5 and the experiment design. Bulletin of American Meteorological Society, 93(4): 485–498, DOI: 10.1175/ BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Uda, M., and Hasunuma, K., 1969. The eastward subtropical countercurrent in the western North Pacific Ocean. Bulletin of American Meteorological Society, 25: 201–210.

    Google Scholar 

  • White, W. B., Hasunuma, K., and Solomon, H., 1978. Large-scale seasonal and secular variability of the subtropical front in the western North Pacific from 1954 to 1974. Journal of Geophysical Research, 83: 4531–4544.

    Article  Google Scholar 

  • Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T., 2010. Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23: 966–986.

    Article  Google Scholar 

  • Xie, S. P., Kunitani, T., Kubokawa, A., Nonaka, M., and Hosoda, S., 2000. Interdecadal thermocline variability in the North Pacific for 1958-1997: A GCM simulation. Journal of Physical Oceanography, 30: 2798–2813.

    Article  Google Scholar 

  • Xie, S. P., Xu, L., Liu, Q., and Kobashi, F., 2011. Dynamical role of mode water ventilation in decadal variability in the central subtropical gyre of the North Pacific. Journal of Climate, 24: 1212–1225.

    Article  Google Scholar 

  • Xu, L. X., Xie, S. P., and Liu, Q., 2012a. Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections. Journal of Geophysical Research — Oceans, 117, C12009, DOI: 10.1029/2012 JC008377

    Article  Google Scholar 

  • Xu, L. X., Xie, S. P., and Liu, Q. Y., 2013. Fast and slow response of the North Pacific Mode Water and subtropical countercurrent to global warming. Journal of Ocean University of China, 12(2), DOI: 10.1007/s11802-013-2189-6.

    Google Scholar 

  • Xu, L. X., Xie, S. P., Liu, Q., and Kobashi, F., 2012b. Response of the North Pacific subtropical countercurrent and its variability to global warming. Journal of Oceanography, 68: 127–137, DOI: 10.1007/s10872-011-0031-6.

    Article  Google Scholar 

  • Yamanaka, G., Ishizaki, H., Hirabara, M., and Ishikawa, I., 2008. Decadal variability of the Subtropical Front of the western North Pacific in an eddy-resolving ocean general circulation model. Journal of Geophysical Research, 113, C12027, DOI: 10.1029/2008JC005002.

    Article  Google Scholar 

  • Yoshida, K., and Kidokoro, T., 1967. A subtropical countercurrent in the North Pacific-An eastward flow near the Subtropical Convergence. Journal of Oceanographical Society of Japan, 23: 88–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinyu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Liu, Q., Xu, L. et al. Response of mode water and Subtropical Countercurrent to greenhouse gas and aerosol forcing in the North Pacific. J. Ocean Univ. China 12, 222–229 (2013). https://doi.org/10.1007/s11802-013-2193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-013-2193-x

Key words

Navigation