Journal of Ocean University of China

, Volume 12, Issue 1, pp 139–145 | Cite as

Applications of three DNA barcodes in assorting intertidal red macroalgal flora in Qingdao, China

Article

Abstract

This study is part of the endeavor to construct a comprehensive DNA barcoding database for common seaweeds in China. Identifications of red seaweeds, which have simple morphology and anatomy, are sometimes difficult solely depending on morphological characteristics. In recent years, DNA barcode technique has become a more and more effective tool to help solve some of the taxonomic difficulties. Some DNA markers such as COI (cytochrome oxidase subunit I) are proposed as standardized DNA barcodes for all seaweed species. In this study, COI, UPA (universal plastid amplicon, domain V of 23S rRNA), and ITS (nuclear internal transcribed spacer) were employed to analyze common species of intertidal red seaweeds in Qingdao (119.3°–121°E, 35.35°–37.09°N). The applicability of using one or a few combined barcodes to identify red seaweed species was tested. The results indicated that COI is a sensitive marker at species level. However, not all the tested species gave PCR amplification products due to lack of the universal primers. The second barcode UPA had effective universal primers but needed to be tested for the effectiveness of resolving closely related species. More than one ITS sequence types were found in some species in this investigation, which might lead to confusion in further analysis. Therefore ITS sequence is not recommended as a universal barcode for seaweeds identification.

Key words

red seaweeds DNA barcoding COI ITS UPA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, I., and Wendel, J. F., 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29: 417–434.CrossRefGoogle Scholar
  2. Bailey, C. D., Carr, T. G., Harris, S. A., and Hughes, C. E., 2003. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution, 29: 435–455.CrossRefGoogle Scholar
  3. Clarkston, B. E., and Saunders, G. W., 2010. A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthora timburtonii sp. nov. Botany, 88(2): 119–131.CrossRefGoogle Scholar
  4. Bischof, K., Gomez, I., Molis, M., Hanelt, D., Karsten, U., Luder, U., Roleda, M. Y., Zacher, K., and Wiencke C., 2006. Ultraviolet radiation shapes seaweed communities. Reviews in Environmental Science and Biotechnology, 5: 141–166.CrossRefGoogle Scholar
  5. Brodie, J., Mortensen, A. M., Ramirez, M. E., Russell, S., and Rinkel, B., 2008. Making the links: towards a global taxonomy for the red algal genus Porphyra (Bangiales, Rhodophyta). Journal of Applied Phycology, 20: 939–949CrossRefGoogle Scholar
  6. Cho, G. Y, Kogame, K., and Boo, S. M., 2006. Molecular phylogeny of the family Scytosiphonaceae (Phaeophyceae). Algae, 21: 175–183.CrossRefGoogle Scholar
  7. Conklin, K. Y., Kurihara, A., and Sherwood, A. R., 2009. A molecular method for identification of the morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii. Journal of Applied Phycology, 21: 691–699.CrossRefGoogle Scholar
  8. Dasmahapatra, K. K., and Mallet, J., 2006. DNA barcodes: recent successes and future prospects. Heredity, 97: 254–255.CrossRefGoogle Scholar
  9. Ding, L. P., Huang, B. X., and Xie, Y. Q., 2011. Advances and problems with the study of marine macroalgae of China seas. Biodiversity Science, 19(6): 798–804.Google Scholar
  10. Erting, L., Daugbjerg, N., and Pedersen, P., 2004. Nucleotide diversity within and between four species of Laminaria (Phaeophyceae) analyzed using partial LSU and ITS rDNA sequences and AFLP. European Journal of Phycology, 39: 243–256.CrossRefGoogle Scholar
  11. Goff, L. J., and Moon, D. A., 1993. PCR amplification of nuclear and plastid genes from algal herbarium specimens and algal spores. Journal of Phycology, 29: 381–384.CrossRefGoogle Scholar
  12. Harper, J. T., and Saunders, G. W., 2001. Molecular systematics of the Florideophyceae (Rhodophyta) using nuclear large- and small-subunit ribosomal DNA sequence data. Journal of Phycology, 37: 1073–1082.CrossRefGoogle Scholar
  13. Hebert, P. D., Cywinska, A., Ball, S. L., and deWaard, J. R., 2003a. Biological identifications through DNA barcodes. Proceedings of Royal Society B, 270: 313–322.CrossRefGoogle Scholar
  14. Hebert, P. D., Ratnasingham, S., and deWaard, J. R., 2003b. Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. Proceedings of Royal Society B, 270: S96–S99.CrossRefGoogle Scholar
  15. Hu, Z. M., Guiry, M. D., and Duan, D. L., 2009. Using the ribosomal internal transcribed spacer (ITS) as a complement marker for species identification of red macroalgae. Hydrobiologia, 635: 279–287.CrossRefGoogle Scholar
  16. Hughey, J. R., Silva, P. C., and Hommersand, M. H., 2001. Solving taxonomic and nomenclatural problems in Pacific Gigartinaceae (Rhodophyta) using DNA from type material. Journal of Phycology, 37: 1091–1109.CrossRefGoogle Scholar
  17. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 111–120.CrossRefGoogle Scholar
  18. Kim, M. S., Yang, M. Y., and Cho, G. Y., 2010. Applying DNA barcoding to Korean Gracilariaceae (Rhodophyta). Cryptogamie, Algologie, 31(4): 387–401.Google Scholar
  19. Kovarik, A. J., Pires, C., Leitch, A. R., Lim, K. Y., Sherwood, A. M., Matyasek, R., Rocca, J., Soltis, D. E., and Soltis, P. S., 2005. Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics, 169: 931–944.CrossRefGoogle Scholar
  20. Le Gall, L., and Saunders, G. W., 2010. DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. Journal of Phycology, 46: 374–389.CrossRefGoogle Scholar
  21. Liu, D. Y., Wang, Z. Y., Sun, J., Huang, Z. Y., and Qian, S. B., 1999. Study of the benthic algae in the littoral of Qingdao coast. Transactions of Oceanology and Limnology, 3: 35–40.Google Scholar
  22. Liu, J. H., and Zhang, Y. H., 1994. A study of the benthic algae in intertidal zone islands round the east of the Shandong peninsula. Jouranl of Ocean University of Qingdao, 24(3): 384–392.Google Scholar
  23. Milstein, D., Medeiros, A., and Oliveira, C., 2011. Will a DNA barcoding approach be useful to identify Porphyra species (Bangiales, Rhodophyta)? Journal of Phycology, DOI: 10.1007/s10811-011-9702-3.Google Scholar
  24. Moritz, C., and Cicero, C., 2004. DNA barcoding: promise and pitfalls. PloS Biology, 2: 1529–1531.CrossRefGoogle Scholar
  25. Presting, G., 2006. Identification of conserved regions in the plastid genome: implications for DNA barcoding and biological function. Canadian Journal of Botany, 84(9): 1434–1443.CrossRefGoogle Scholar
  26. Robba, L., Russell, S., Baker, G., and Brodie, J., 2006. Assessing the use of the mitochondrial COX I marker for use in DNA barcoding of red algae (Rhodophyta). American Journal of Botany, 93(8): 1101–1108.CrossRefGoogle Scholar
  27. Ruangchuay, R., and Notoya, M., 2007. Reproductive strategy and occurrence of gametophytes of Thai laver Porphyra vietnamensis Tanaka et Pham-Hoang Ho (Bangiales, Rhodophyta) from Songkhla Province. Kasetsart Journal Natural Sciences, 41: 143–152.Google Scholar
  28. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Elich, H. A., 1988. Primer-directed enzymatic amplification of DNA with a thermo stable DNA polymerase. Science, 239: 487–491.CrossRefGoogle Scholar
  29. Saunders, G. W., 2005. Applying DNA barcoding to red macroalgae a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society B, 360: 1879–1888.CrossRefGoogle Scholar
  30. Saunders, G. W., 2008. A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea-Neodilsea complex and Weeksia: Botany, 86: 773–789.Google Scholar
  31. Sherwood, A. R., and Presting, G. G., 2007. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria: Journal of Phycology, 43: 605–608.CrossRefGoogle Scholar
  32. Sherwood, A. R., Kurihara, A., Conklin, K. Y., Sauvage, T., and Presting, G. G., 2010. The Hawaiian Rhodophyta Biodiversity Survey (2006–2010): a summary of principal findings. BMC Plant Biology. http://www.biomedcentral.com/1471-2229/10/258.
  33. Sonnenberg, R., Nolte, A. W., and Tautz, D., 2007. An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Frontiers in Zoology, 4: 6.CrossRefGoogle Scholar
  34. State Oceanic Administration, People’s Republic of China, 2010. Bulletin of China’s Marine Environmental Status of China for the Year of 2010. 1 General Review. http://www.soa.gov.cn/soa/hygbml/hjgb/tenEnglish/webinfo/2011/09/1315180837414231.htm. Accessed on 2011-9-7. Line 1–2, page 1.
  35. Stoeckle, M., 2003. Taxonomy, DNA, and the barcode of life. Bioscience, 53: 796–797.CrossRefGoogle Scholar
  36. Tamura, K., Dudley, J., Nei, M., and Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596–1599.CrossRefGoogle Scholar
  37. Thompson, J. D., Higgins, D. G., and Gibson, T. J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Research, 22: 4673–4680.CrossRefGoogle Scholar
  38. Tseng, C. K., 1983. Common Seaweeds of China. Science Press, Beijing, China, preface ii.Google Scholar
  39. Tseng, C. K., Xia, B. M., and Zhou, X. T., 2009. Seaweeds in Yellow Sea and Bohai Sea of China. Science Press, Beijing, China, 1–254 (in Chinese).Google Scholar
  40. Yang, Z., Wang, Y., Dong, K. S., Tang, X. X., and Zhao, X., 2009. The Survey on the community of benthic marine macroalgae. Periodical of Ocean University of China, 39(4): 647–651.Google Scholar
  41. Yoon, H. S., Lee, J. Y., Boo, S. M., and Bhattacharya, D., 2001. Phylogeny of Alariaceae, Laminariaceae and Lessonaceae (Phaeophyceae) based on plastid-encoding rubisco spacer and nuclear-encoded ITS sequence comparisons. Molecular Phylogenetics and Evolution, 21: 231–243.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaobo Zhao
    • 1
    • 2
  • Shaojun Pang
    • 1
  • Tifeng Shan
    • 1
  • Feng Liu
    • 1
  1. 1.Key Laboratory of Experimental Marine Biology, Marine Biological Culture Collection Centre, Institute of OceanologyChinese Academy of SciencesQingdaoP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations