Skip to main content
Log in

Effects of dietary soy isoflavones on feed intake, growth performance and digestibility in juvenile Japanese flounder (Paralichthys olivaceus)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

An 8-week feeding trial was conducted to investigate the effects of dietary soy isoflavones on feeding intake, growth performance, and digestion of juvenile Japanese flounder (Paralichthys olivaceus). Four isonitrogenous (49% crude protein) and isoenergetic (20.1 MJ kg−1) diets were formulated to contain four graded levels of soy isoflavones, namely, 0, 1, 4 and 8 g soy isoflavones in 1 kg of diet. Each diet was randomly fed to triplicate tanks of fish (Initial average weight: 2.58 g ± 0.01 g), and each tank was stocked with 35 fish. No significant difference was observed among diets with levels of 0, 1 and 4 g kg−1 soy isoflavones in feed intake, weight gain, feed efficiency ratio (FER), proximate composition of fish whole body and apparent digestibility coefficients (ADC) of nutrients and energy (P>0.05). However, high dietary soy isoflavones level (8 g kg−1) significantly depressed weight gain, FER, whole-body crude lipid content of fish and ADC of nutrients (P<0.05). These results indicate that high level of dietary soy isoflavones (above 4 g kg−1) significantly depresses growth responses and FER of Japanese flounder. However, as the content of soy isoflavones in soybean meal is around 1 to 3 g kg−1, the adverse effects might be neglected when soybean products are used as a fish feed ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Association of Official Analytical Chemists (AOAC), 1995. Official Methods of Analysis. Association of Official Analytical Chemists, Gaitherburg, MD, 1298pp.

    Google Scholar 

  • Barrett, J., 1996. Phytoestrogens: friends or foes? Environmental Health Perspectives, 104: 478–482.

    Google Scholar 

  • Burel, C., Boujard, T., Kaushik, S. J., Boeuf, G., Geyten, S. V. D., Mol, K. A., Kühn, E. R., Quinsac, A., Krouti, M., and Ribaillier, D., 2000. Potential of plant-protein sources as fish meal substitutes in diets for turbot (Psetta maxima): growth, nutrient utilization and thyroid status. Aquaculture, 188: 363–382.

    Article  Google Scholar 

  • Burrells, C., Williams, P. D., Southgate, P. J., and Crampton, V. O., 1999. Immunological, physiological and pathological responsesof rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Veternary Immunology and Immunopathology, 72: 277–288.

    Article  Google Scholar 

  • Cao, Y. K., Zhang, S. F., Zou, S. E., and Xia, X., 2012. Daidzein improves insulin resistance in ovariectomized rats. Climacteric, DOI:10.3109/13697137.2012.664831.

  • Catherine, B. P., Bernard, B. B., Bernard, B., Geneviève, C., Françoise, L. M., Blandine, D. C., Chantal, H., and Sadasivam, J. K., 2001. Effect of genistein-enriched diets on the endocrine process of Gametogenesis and on reproduction efficiency of the rainbow trout Oncorhynchus mykiss. General and Comparative Endocrinology, 121: 173–187.

    Article  Google Scholar 

  • Cole, D. W., Cole, R., Gaydos, S. J., Gray, J., Hyland, G., Jacques, M. L., Powell-Dunford, N., Sawhney, C., and Au, W. W., 2009. Aquaculture: Environmental, toxicological, and health issues. Internet Journal of Hygiene and Environmental Health, 212: 369–377.

    Article  Google Scholar 

  • Day, O. J., and Plascencia-GonzÁlez, H. G., 2000. Soybean protein concentrate as a protein source for turbot Scophthalmus maximus L. Aquaculture Nutrition, 6: 221–228.

    Article  Google Scholar 

  • Deng, J. M., Mai, K. S., Ai, Q. H., Zhang, W. B., Wang, X. J., Xu, W., and Liufu, Z. G., 2006. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture, 258: 503–513.

    Article  Google Scholar 

  • Friendman, M., and Baron, D. L., 2001. Nutritional and health benefits of soy proteins. Journal of Agricultural and Food Chemistry, 49: 1069–1086.

    Article  Google Scholar 

  • Gaylord, T. G., Teague, A. M., and Barrows, F. T., 2006. Taurine supplementation of all-protein diets for rainbow trout (Oncorhynchus mykiss). Journal of Word Aquaculture Science, 37: 509–517.

    Article  Google Scholar 

  • Guo, X. H., and Zhao, H. S., 2005. Effects of daidzein on productive performance and related endocrine secretion in broilers. Acta Zoonutrimenta Sinica, 17: 63–64.

    Google Scholar 

  • Han, Z. K., 1999. Studies of isoflavonic phytoestrogen-daidzein affecting growth and related endocrine secretion in male animals. Animal Husbandry and Veterinary Medicine, 31: 1–2.

    Google Scholar 

  • Hernández, M. D., Martínez, F. J., Jover, M., and García García, B., 2007. Effects of partial replacement of fish meal by soybean meal in sharpsnout seabream (Diplodus puntazzo) diet. Aquaculture, 263: 159–167.

    Article  Google Scholar 

  • Kaushik, S. J., Covès, D., Dutto, G., and Blanc, D., 2004. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture, 230: 391–404.

    Article  Google Scholar 

  • Kikuchi, K., Furuta, T., and Honda, H., 1994. Utilization of soybean meal as a protein source in the diet of juvenile Japanese flounder Paralichthys olivaceus. Suisanzoshoku, 42: 601–604 (in Japanese with English abstract).

    Google Scholar 

  • Kikuchi, K., 1999. Use of defatted soybean meal as a substitute for fish meal in diets of Japanese flounder (Paralichthys olivaceus). Aquaculture, 179: 3–11.

    Article  Google Scholar 

  • Kim, Y. S., Kim, B. S., Moon, T. S., and Lee, S. M., 2000. Utilization of defatted soybean meal as a substitute for fish meal in the diet of juvenile flounder (Paralichthys olivaceus). Journal of the Korean Fisheries Society, 33: 469–474.

    Google Scholar 

  • Ko, K., Malison, J. A., and Reed, J. R., 1999. Effect of genistein on the growth and reproductive function of male and female yellow perch Perca flavescens. Journal of the World Aquaculture Society, 30: 73–79.

    Article  Google Scholar 

  • Krogdahl, Å., Bakke-McKellep, A. M., and Baeverfjord, G., 2003. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 9: 361–371.

    Article  Google Scholar 

  • Kudou, S., Fleury, Y., Welti, D., Magnolato, D., Uchida, T., Kitamura, K., and Okubo, K., 1991. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Journal of Agriculture Biological Chemistry, 55: 2227–2233.

    Article  Google Scholar 

  • Kurzer, M. S., and Xu, X., 1997. Dietary phytoestrogens. Annual Review of Nutrition, 17: 353–381.

    Article  Google Scholar 

  • Lilleeng, E., Frøystad, M. K., Vekterud, K., Valen, E. C., and Krogdahl, Å., 2007. Comparison of intestinal gene expression in Atlantic cod (Gadus morhua) fed standard fish meal or soybean meal by means of suppression subtractive hybridization and real-time PCR. Aquaculture, 267: 269–283.

    Article  Google Scholar 

  • Lin, H. R., 2000. The interactions of neuroendocrine regulation on reproduction and growth in fish. Zoological Research, 21: 12–16.

    Google Scholar 

  • Messina, M., 2010. A brief historical overview of the past two decades of soy and isoflavone research. The Journal of nutrition, 140: 13505–13545.

    Google Scholar 

  • NRC (National Research Council), 2011. Nutrient Requirements of Fish and Shrimp. National Academy Press, Washington, DC, USA, 376pp.

    Google Scholar 

  • Opstvedt, J., Aksnes, A., and Hope, B., 2003. Efficiency of feed utilization in Atlantic salmon (Salmo salar L.) fed diets with increasing substitution of fish meal with vegetable proteins. Aquaculture, 221: 365–379.

    Article  Google Scholar 

  • Pollack, S. J., and Ottinger, M. A., 2003. The effects of the soy isoflavone genistein on the reproductive development of striped bass. North American Journal of Aquaculture, 65: 226–234.

    Article  Google Scholar 

  • Refstie, S., Storebakken, T., and Roem, A. J., 1998. Feed consumption and conversion in Altantic salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigenes. Aquaculture, 162: 301–312.

    Article  Google Scholar 

  • Saitoh, S., Koshio, S., Harda, H., Watanabe, K., Yoshida, T., Teshima, S. I., and Ishikawa, M., 2003. Utilization of extruded soybean meal for Japanese flounder Paralichthys olivaceus juveniles. Fisheries Science, 69: 1075–1077.

    Article  Google Scholar 

  • Setchell, K. D. R., 1998. Phytoestrogens: the biochemistry, physiology and implications for human health of soy isoflavones. American Journal of Clinical Nutrition, 68: 1333–1346.

    Google Scholar 

  • Takagi, S., Murata, H., Endo, M., Hatate, H., and Ukawa, M., 2008. Taurine is an essential nutrient for yellowtail Seriola quinqueradiata fed non-fish meal diets based on soy protein concentrate. Aquaculture, 280: 198–205.

    Article  Google Scholar 

  • Van den Ingh, T. S. G. A. M., and Krogdahl, A., 1990. Negative effects of antinutritional factors from soybeans in salmonidae. Tijdschriftvoor Diergeneeskunde, 115: 935–938.

    Google Scholar 

  • Woclawek-Potocka, I., Bah, M. M., Korzekwa, A., Piskula, M. K., Wizkowski, E., Depta, A., and Skarzynski, D. J., 2005. Soybeanderived phytoestrogens regulate prostaglandin secretion in endometrium during cattle estrous cycle and early pregnancy. Experimental Biology and Medicine, 230: 189–199.

    Google Scholar 

  • Xiao, C. W., Mei, J., and Wood, C. M., 2008. Effect of soy proteins and isoflavones on lipid metabolism and involed gene expression. Frontiers in Bioscience, 13: 2660–2673.

    Article  Google Scholar 

  • Ye, J. D., and Chen, X. H., 2008. Effects of dietary daidzein on growth and activities of digestive enzyme, superoxide dismutase and acid phosphatase in American eel, Anguilla rostrata. Journal of Jimei University (Natural Science), 31: 1–6.

    Google Scholar 

  • Yigit, M., Koshio, S., Teshima, S., and Ishikawa, M., 2004. Dietary protein and energy requirements of juvenile Japanese flounder, Paralichthys olivaceus. Journal of Applied Science, 4: 486–492.

    Article  Google Scholar 

  • Yu, Z. G., Xia, D. Q., and Wu, T. T., 2006. Effects of daidzein on growth, hormone and physio-biochemical parameters levels in Oreochromis aureus. Chinese Journal of Veterinary Science, 26: 183–185.

    Google Scholar 

  • Zhang, W., 2010. Effects of soybean saponins and soybean isoflavones on growth, physiology and intestinal health of allogynogentic silver crucian carp. Thesis, Soochow University.

  • Zhou, Q. C., Tan, B. P., Mai, K. S., and Liu, Y. J., 2004. Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum. Auqaculture, 241: 441–451.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangsen Mai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mai, K., Zhang, Y., Chen, W. et al. Effects of dietary soy isoflavones on feed intake, growth performance and digestibility in juvenile Japanese flounder (Paralichthys olivaceus). J. Ocean Univ. China 11, 511–516 (2012). https://doi.org/10.1007/s11802-012-2146-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-012-2146-9

Key words

Navigation