Advertisement

Journal of Ocean University of China

, Volume 11, Issue 4, pp 562–568 | Cite as

Extraction of astaxanthin from Euphausia pacific using subcritical 1, 1, 1, 2-tetrafluoroethane

  • Yuqian HanEmail author
  • Qinchuan Ma
  • Lan Wang
  • Changhu Xue
Article

Abstract

Euphausia pacific is an important source of natural astaxanthin. Studies were carried out to assess the extractability of astaxanthin from E. pacific using subcritical 1, 1, 1, 2-tetrafluoroethane (R134a). To examine the effects of multiple process variables on the extraction yield, astaxanthin was extracted under various conditions of pressure (30–150 bar), temperature (303–343 K), time (10–50 min), flow rate (2–10 g min−1), moisture content (5.5%–63.61%), and particle size (0.25–0.109 mm). The results showed that the extraction yield increased with temperature, pressure, time and flow rate, but decreased with moisture content and particle size. A maximum yield of 87.74% was obtained under conditions of 100 bar, 333 K, and 30 min with a flow rate of 6 g min−1 and a moisture content of 5.5%. The substantial astaxanthin yield obtained under low-pressure conditions demonstrates that subcritical R134a is a good alternative to CO2 for extraction of astaxanthin from E. pacific.

Key words

subcritical R134a astaxanthin extraction Euphausia pacific 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, A. P., and Eardly, C. A., 1998. Solvent properties of liquid and supercritical 1, 1, 1, 2-tetrafluoroethane. The Journal of Physical Chemistry B, 102(43): 8 574–8 578.CrossRefGoogle Scholar
  2. Abbott, A. P., Eardly, C. A., and Scheirer, J. E., 1999. Solvent properties of supercritical CO2/HFC134a mixtures. The Journal of Physical Chemistry B, 103(41): 8 790–8 793.CrossRefGoogle Scholar
  3. Brunner, G., 1994. Gas Extraction: An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Springer, New York, ??-??.Google Scholar
  4. Careri, M., Furlattini, L., Mangia, A., Musci, M., Anklam, E., Theobald, A., and von Holst, C., 2001. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina Pacifica algae: a chemometric approach. Journal of Chromatography A, 912(1): 61–71.CrossRefGoogle Scholar
  5. Corr, S., 2002. 1, 1, 1, 2-Tetrafluoroethane; from refrigerant and propellant to solvent. Journal of Fluorine Chemistry, 118(1–2): 55–67.CrossRefGoogle Scholar
  6. Higuera-Ciapara, I., Félix-Valenzuela, L., and Goycoolea, F. M., 2006. Astaxanthin: a review of its chemistry and applications. Critical Reviews in Food Science and Nutrition, 46(2): 185–196.CrossRefGoogle Scholar
  7. Jackson, K., and Fulton, J. L., 1996. Microemulsions in supercritical hydrochlorofluorocarbons. Langmuir, 12(22): 5 289–5 295.CrossRefGoogle Scholar
  8. Kamlet, M. J., Abboud, J. L. M., Taft, R. W., 1977. The solvatochromic comparison method. 6. The.pi.* scale of solvent polarities. Journal of the American Chemical Society, 99(18): 6 027–6 038.CrossRefGoogle Scholar
  9. Lagalante, A. F., Clarke, A. M., and Bruno, T. J., 1998. Modeling the water-R134a partition coefficients of organic solutes using a linear solvation energy relationship. Journal of Physical Chemistry B, 102(44): 8 889–8 892.CrossRefGoogle Scholar
  10. Lapkin, A. A., Plucinski, P. K., and Cutler, M., 2006. Comparative Assessment of Technologies for Extraction of Artemisinin. Journal of Natural Products, 69(11): 1653–1664.CrossRefGoogle Scholar
  11. Laurence, C., Nicolet, P., Dalati, M. T., Abboud, J. L. M., Notario, R., 1994. The Empirical Treatment of Solvent-Solute Interactions: 15 Years of.pi.*. Journal of Physical Chemistry, 98(23): 5 807–5 816.CrossRefGoogle Scholar
  12. Li, J. R., Lee, Y. M., and Yu, T., 2000. Solubilization of hydrophilic compounds in 1, 1, 1, 2-tetrafluoroethane with a cationic surfactant. Analytical Chemistry, 72(6): 1 348–1 351.CrossRefGoogle Scholar
  13. López, M., Arce, L., Garrido, J., Ríos, A., and Valcárcel, M., 2004. Selective extraction of astaxanthin from crustaceans by use of supercritical carbon dioxide. Talanta, 64(3): 726–731.CrossRefGoogle Scholar
  14. Machmudah, S., Shotipruk, A., Goto, M., Sasaki, M., and Hirose, T., 2006a. Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Industrial and Engineering Chemistry Research, 45(10): 3 652–3 657.CrossRefGoogle Scholar
  15. Machmudah, S., Sulaswatty, A., Sasaki, M., Goto, M., and Hirose, T., 2006b. Supercritical CO2 extraction of nutmeg oil: Experiments and modeling. The Jounal of Supercritical Fluids, 39(1): 30–39.CrossRefGoogle Scholar
  16. Mira, B., Blasco, M., Berna, A., and Subirats, S., 1999. Supercritical CO2 extraction of essential oil from orange peel. Effect of operation conditions on the extract composition. The Journal of Supercritical Fluids, 14(2): 95–104.CrossRefGoogle Scholar
  17. Mustapa, A. N., Manan, Z. A., Mohd Azizi, C. Y., Nik Norulaini, N. A., and Mohd Omar, A. K., 2009. Effects of parameters on yield for subcritical R134a extraction of palm oil. Journal of Food Engineering, 95(4): 606–616.CrossRefGoogle Scholar
  18. Nagy, B., and Simándi, B., 2008. Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. The Journal of Supercritical Fluids, 46(3): 293–298.CrossRefGoogle Scholar
  19. Nobre, B., Marcelo, F., Passos, R., Beirão, L., Palavra, A., Gouveria, L., and Mendes, R., 2006. Supercritical carbon dioxide extraction of astaxanthin and othercarotenoids from the microalga Haematococcus pluvialis. European Food Research and Technology, 223(6): 787–790.CrossRefGoogle Scholar
  20. Pourmortazavi, S. M., and Hajimirsadeghi, S. S., 2007. Supercritical fluid extraction in plant essential and volatile oil analysis. Journal of Chromatography A, 1163(1): 2–24.CrossRefGoogle Scholar
  21. Qu, Y., Ni, J. R., and Huang, W., 2004. The study on extracting astaxanthin by supercritical fluid CO2. Food and Fermentation Industries, 30(12): 80–82.Google Scholar
  22. Roth, M., 1996. Thermodynamic prospects of alternative refrigerants as solvents for supercritical fluid extraction. Analytical Chemistry, 68(24): 4 474–4 480.CrossRefGoogle Scholar
  23. Roy, B. C., Goto, M., and Hirose, T., 1996. Extraction of ginger oil with supercritical carbon dioxide: Experiments and modeling. Industrial and Engineering Chemistry Research, 35(2): 607–612.CrossRefGoogle Scholar
  24. Standard Operating Procedure: Assay for Vitamin A by HPLC (1992). FDA Nutrition Methodology, Food and Drug Administration, NBS SOP No. ANRS260. Rockville, MD.Google Scholar
  25. Sabio, E., Lozano, M., Montero de Espinosa, V., Mendes, R. L., Pereira, A. P., Palavra, A. F., and Coelho, J. A., 2003. Lycopene and β-carotene extraction from tomato processing waste using supercritical CO2. Industrial and Engineering Chemistry Research, 42(25): 6 641–6 646.CrossRefGoogle Scholar
  26. Sachindra, N. M., Bhaskar, N., and Mahendrakar, N. S., 2006. Recovery of carotenoids from shrimp waste in organic solvents. Waste Management, 26(10): 1 092–1 098.CrossRefGoogle Scholar
  27. Sachindra, N. M., Bhaskar, N., Siddegowda, G. S., Sathisha, A. D., and Suresh, P. V., 2007. Recovery of carotenoids from ensilaged shrimp waste. Bioresource Technology, 98(8): 1 642–1 646.CrossRefGoogle Scholar
  28. Saldana, M. D. A., Zetzl, C., Mohamed, R. S., and Brunner, G., 2002. Decaffeination of Guaraná seeds in a microextraction column using water-saturated CO2. The Journal of Supercritical Fluids, 22(2): 119–127.CrossRefGoogle Scholar
  29. Selvam, P., Peguin, R. P. S., Chokshi, U., and da Rocha, S. R. P., 2006. Surfactant design for the 1, 1, 1, 2-tetrafluoroethane-water interface: ab initio calculations and in situ high-pressure tensiometry. Langmuir, 22(21): 8 675–8 683.CrossRefGoogle Scholar
  30. Shimidzu, N., Goto, M., and Miki, W., 1996. Carotenoids as singlet oxygen quenchers in marine organisms. Fisheries Science, 62(1): 134–137.Google Scholar
  31. Simões, P. C., and Catchpole, O. J., 2002. Fractionation of lipids mixture by subcritical R134a in packed column. Industrial and Engineering Chemistry Research, 41(2): 267–276.CrossRefGoogle Scholar
  32. Simpson, B. K., and Haard, N. F., 1985. The use of proteolytic enzymes to extract carotenoprotein from shrimp waste. Journal of Applied Bioscience, 7: 212–222.Google Scholar
  33. Stahl, E., Quirin, K. W., and Gerard, D., 1988. Dense Gases for Extraction and Refining. Springer, Berlin, Germany, 10–13.CrossRefGoogle Scholar
  34. Thana, P., Machmudah, S., Goto, M., Sasaki, M., Pavasant, P., and Shotipruk, A., 2008. Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 99(8): 3 110–3 115.CrossRefGoogle Scholar
  35. Zhang, Y. X., Wu, L. G., Luo, Z. H., Lin, Q., and Duan, S., 2008. Extraction of astaxanthin from shrimp and its stability. Modern Food Science and Technology, 24(12): 1 288–1 291.Google Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yuqian Han
    • 1
    Email author
  • Qinchuan Ma
    • 1
  • Lan Wang
    • 1
  • Changhu Xue
    • 1
  1. 1.Department of Food Science and EngineeringOcean University of ChinaQingdaoP. R. China

Personalised recommendations