Skip to main content
Log in

Extraction of astaxanthin from Euphausia pacific using subcritical 1, 1, 1, 2-tetrafluoroethane

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Euphausia pacific is an important source of natural astaxanthin. Studies were carried out to assess the extractability of astaxanthin from E. pacific using subcritical 1, 1, 1, 2-tetrafluoroethane (R134a). To examine the effects of multiple process variables on the extraction yield, astaxanthin was extracted under various conditions of pressure (30–150 bar), temperature (303–343 K), time (10–50 min), flow rate (2–10 g min−1), moisture content (5.5%–63.61%), and particle size (0.25–0.109 mm). The results showed that the extraction yield increased with temperature, pressure, time and flow rate, but decreased with moisture content and particle size. A maximum yield of 87.74% was obtained under conditions of 100 bar, 333 K, and 30 min with a flow rate of 6 g min−1 and a moisture content of 5.5%. The substantial astaxanthin yield obtained under low-pressure conditions demonstrates that subcritical R134a is a good alternative to CO2 for extraction of astaxanthin from E. pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, A. P., and Eardly, C. A., 1998. Solvent properties of liquid and supercritical 1, 1, 1, 2-tetrafluoroethane. The Journal of Physical Chemistry B, 102(43): 8 574–8 578.

    Article  Google Scholar 

  • Abbott, A. P., Eardly, C. A., and Scheirer, J. E., 1999. Solvent properties of supercritical CO2/HFC134a mixtures. The Journal of Physical Chemistry B, 103(41): 8 790–8 793.

    Article  Google Scholar 

  • Brunner, G., 1994. Gas Extraction: An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes. Springer, New York, ??-??.

    Google Scholar 

  • Careri, M., Furlattini, L., Mangia, A., Musci, M., Anklam, E., Theobald, A., and von Holst, C., 2001. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina Pacifica algae: a chemometric approach. Journal of Chromatography A, 912(1): 61–71.

    Article  Google Scholar 

  • Corr, S., 2002. 1, 1, 1, 2-Tetrafluoroethane; from refrigerant and propellant to solvent. Journal of Fluorine Chemistry, 118(1–2): 55–67.

    Article  Google Scholar 

  • Higuera-Ciapara, I., Félix-Valenzuela, L., and Goycoolea, F. M., 2006. Astaxanthin: a review of its chemistry and applications. Critical Reviews in Food Science and Nutrition, 46(2): 185–196.

    Article  Google Scholar 

  • Jackson, K., and Fulton, J. L., 1996. Microemulsions in supercritical hydrochlorofluorocarbons. Langmuir, 12(22): 5 289–5 295.

    Article  Google Scholar 

  • Kamlet, M. J., Abboud, J. L. M., Taft, R. W., 1977. The solvatochromic comparison method. 6. The.pi.* scale of solvent polarities. Journal of the American Chemical Society, 99(18): 6 027–6 038.

    Article  Google Scholar 

  • Lagalante, A. F., Clarke, A. M., and Bruno, T. J., 1998. Modeling the water-R134a partition coefficients of organic solutes using a linear solvation energy relationship. Journal of Physical Chemistry B, 102(44): 8 889–8 892.

    Article  Google Scholar 

  • Lapkin, A. A., Plucinski, P. K., and Cutler, M., 2006. Comparative Assessment of Technologies for Extraction of Artemisinin. Journal of Natural Products, 69(11): 1653–1664.

    Article  Google Scholar 

  • Laurence, C., Nicolet, P., Dalati, M. T., Abboud, J. L. M., Notario, R., 1994. The Empirical Treatment of Solvent-Solute Interactions: 15 Years of.pi.*. Journal of Physical Chemistry, 98(23): 5 807–5 816.

    Article  Google Scholar 

  • Li, J. R., Lee, Y. M., and Yu, T., 2000. Solubilization of hydrophilic compounds in 1, 1, 1, 2-tetrafluoroethane with a cationic surfactant. Analytical Chemistry, 72(6): 1 348–1 351.

    Article  Google Scholar 

  • López, M., Arce, L., Garrido, J., Ríos, A., and Valcárcel, M., 2004. Selective extraction of astaxanthin from crustaceans by use of supercritical carbon dioxide. Talanta, 64(3): 726–731.

    Article  Google Scholar 

  • Machmudah, S., Shotipruk, A., Goto, M., Sasaki, M., and Hirose, T., 2006a. Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Industrial and Engineering Chemistry Research, 45(10): 3 652–3 657.

    Article  Google Scholar 

  • Machmudah, S., Sulaswatty, A., Sasaki, M., Goto, M., and Hirose, T., 2006b. Supercritical CO2 extraction of nutmeg oil: Experiments and modeling. The Jounal of Supercritical Fluids, 39(1): 30–39.

    Article  Google Scholar 

  • Mira, B., Blasco, M., Berna, A., and Subirats, S., 1999. Supercritical CO2 extraction of essential oil from orange peel. Effect of operation conditions on the extract composition. The Journal of Supercritical Fluids, 14(2): 95–104.

    Article  Google Scholar 

  • Mustapa, A. N., Manan, Z. A., Mohd Azizi, C. Y., Nik Norulaini, N. A., and Mohd Omar, A. K., 2009. Effects of parameters on yield for subcritical R134a extraction of palm oil. Journal of Food Engineering, 95(4): 606–616.

    Article  Google Scholar 

  • Nagy, B., and Simándi, B., 2008. Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. The Journal of Supercritical Fluids, 46(3): 293–298.

    Article  Google Scholar 

  • Nobre, B., Marcelo, F., Passos, R., Beirão, L., Palavra, A., Gouveria, L., and Mendes, R., 2006. Supercritical carbon dioxide extraction of astaxanthin and othercarotenoids from the microalga Haematococcus pluvialis. European Food Research and Technology, 223(6): 787–790.

    Article  Google Scholar 

  • Pourmortazavi, S. M., and Hajimirsadeghi, S. S., 2007. Supercritical fluid extraction in plant essential and volatile oil analysis. Journal of Chromatography A, 1163(1): 2–24.

    Article  Google Scholar 

  • Qu, Y., Ni, J. R., and Huang, W., 2004. The study on extracting astaxanthin by supercritical fluid CO2. Food and Fermentation Industries, 30(12): 80–82.

    Google Scholar 

  • Roth, M., 1996. Thermodynamic prospects of alternative refrigerants as solvents for supercritical fluid extraction. Analytical Chemistry, 68(24): 4 474–4 480.

    Article  Google Scholar 

  • Roy, B. C., Goto, M., and Hirose, T., 1996. Extraction of ginger oil with supercritical carbon dioxide: Experiments and modeling. Industrial and Engineering Chemistry Research, 35(2): 607–612.

    Article  Google Scholar 

  • Standard Operating Procedure: Assay for Vitamin A by HPLC (1992). FDA Nutrition Methodology, Food and Drug Administration, NBS SOP No. ANRS260. Rockville, MD.

  • Sabio, E., Lozano, M., Montero de Espinosa, V., Mendes, R. L., Pereira, A. P., Palavra, A. F., and Coelho, J. A., 2003. Lycopene and β-carotene extraction from tomato processing waste using supercritical CO2. Industrial and Engineering Chemistry Research, 42(25): 6 641–6 646.

    Article  Google Scholar 

  • Sachindra, N. M., Bhaskar, N., and Mahendrakar, N. S., 2006. Recovery of carotenoids from shrimp waste in organic solvents. Waste Management, 26(10): 1 092–1 098.

    Article  Google Scholar 

  • Sachindra, N. M., Bhaskar, N., Siddegowda, G. S., Sathisha, A. D., and Suresh, P. V., 2007. Recovery of carotenoids from ensilaged shrimp waste. Bioresource Technology, 98(8): 1 642–1 646.

    Article  Google Scholar 

  • Saldana, M. D. A., Zetzl, C., Mohamed, R. S., and Brunner, G., 2002. Decaffeination of Guaraná seeds in a microextraction column using water-saturated CO2. The Journal of Supercritical Fluids, 22(2): 119–127.

    Article  Google Scholar 

  • Selvam, P., Peguin, R. P. S., Chokshi, U., and da Rocha, S. R. P., 2006. Surfactant design for the 1, 1, 1, 2-tetrafluoroethane-water interface: ab initio calculations and in situ high-pressure tensiometry. Langmuir, 22(21): 8 675–8 683.

    Article  Google Scholar 

  • Shimidzu, N., Goto, M., and Miki, W., 1996. Carotenoids as singlet oxygen quenchers in marine organisms. Fisheries Science, 62(1): 134–137.

    Google Scholar 

  • Simões, P. C., and Catchpole, O. J., 2002. Fractionation of lipids mixture by subcritical R134a in packed column. Industrial and Engineering Chemistry Research, 41(2): 267–276.

    Article  Google Scholar 

  • Simpson, B. K., and Haard, N. F., 1985. The use of proteolytic enzymes to extract carotenoprotein from shrimp waste. Journal of Applied Bioscience, 7: 212–222.

    Google Scholar 

  • Stahl, E., Quirin, K. W., and Gerard, D., 1988. Dense Gases for Extraction and Refining. Springer, Berlin, Germany, 10–13.

    Book  Google Scholar 

  • Thana, P., Machmudah, S., Goto, M., Sasaki, M., Pavasant, P., and Shotipruk, A., 2008. Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 99(8): 3 110–3 115.

    Article  Google Scholar 

  • Zhang, Y. X., Wu, L. G., Luo, Z. H., Lin, Q., and Duan, S., 2008. Extraction of astaxanthin from shrimp and its stability. Modern Food Science and Technology, 24(12): 1 288–1 291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqian Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Ma, Q., Wang, L. et al. Extraction of astaxanthin from Euphausia pacific using subcritical 1, 1, 1, 2-tetrafluoroethane. J. Ocean Univ. China 11, 562–568 (2012). https://doi.org/10.1007/s11802-012-1948-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-012-1948-0

Key words

Navigation