Skip to main content
Log in

Lignin in marine environment and its analysis—A review

  • Review
  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Lignin is a group of phenolic polymers which is abundant in the woody tissues of vascular plants, and is essentially absent from all other living organisms. It has therefore been accepted as a tracer for terrestrial organic carbon (TOC) in marine environment since the 1970s. Lignin polymers are not amenable to direct chemical analysis without prior isolation. This review focused on the methods of chemical decomposition, extraction, derivatization and detection of lignin in marine environment. We described and compared several chemical decomposition methods, including nitrobenzene oxidation, alkaline cupric oxide (CuO) oxidation and thermochemolysis, and detection methods such as gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC) and so on. Possible improvement of lignin analysis and the application prospects of this tracer were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barghoorn, R. F. L. A., 1970. Phenolic aldehydes: generation from fossil woods and carbonaceous sediments by oxidative degradation. Science, 168(3931): 582–584.

    Google Scholar 

  • Clifford, D. J., Carson, D. M., McKinney, D. E., Bortiatynski, J. M., and Hatcher, P. G., 1995. A new rapid technique for the characterization of lignin in vascular plants: Thermochemolysis with tetramethylammonium hydroxide (TMAH). Organic Geochemistry, 23(2): 169–175.

    Article  Google Scholar 

  • Creighton, R. H. J., Gibbs, R. D., and Hibbert, H., 1944. Studies on lignin and related compounds. LXXV. Alkaline nitrobenzene oxidation of plant materials and application to taxonomic classification 1. Journal of the American Chemical Society, 66(1): 32–37.

    Article  Google Scholar 

  • Dittmar, T., and Lara, R. J., 2001. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil). Geochimica et Cosmochimica Acta, 65(9): 1417–1428.

    Article  Google Scholar 

  • Eriksson, K. B. R. A., 1990. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer-Verlag, Berlin and New York, 12.

    Book  Google Scholar 

  • Fabbri, D., Sangiorgi, F., and Vassura, I., 2005. Pyrolysis-GC-MS to trace terrigenous organic matter in marine sediments: A comparison between pyrolytic and lipid markers in the Adriatic Sea. Analytica Chimica Acta, 530(2): 253–261.

    Article  Google Scholar 

  • Faure, P., and Landais, P., 2001. Rapid contamination screening of river sediments by flash pyrolysis-gas chromatography-mass spectrometry (PyGC-MS) and thermodesorption GC-MS (TdGC-MS). Journal of Analytical and Applied Pyrolysis, 57(2): 187–202.

    Article  Google Scholar 

  • Freeman, K. H., Hayes, J. M., Trendel, J., and Albrecht, P., 1990. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature, 343(6255): 254–256.

    Article  Google Scholar 

  • Gardner, W. S., and Menzel, D. W., 1974. Phenolic aldehydes as indicators of terrestrially derived organic matter in the sea. Geochimica et Cosmochimica Acta, 38(6): 813–822.

    Article  Google Scholar 

  • Goñi, M. A., 1992. The Use of CuO Reaction Products for the Characterization of Organic Matter in the Marine Environment. University of Washington, Seattle, 26–45.

    Google Scholar 

  • Goñi, M. A., and Eglinton, T. I., 1994. Analysis of kerogens and kerogen precursors by flash pyrolysis in combination with isotope-ratio-monitoring gas chromatography-mass spectrometry (irm-GC-MS). Journal of High Resolution Chromatography, 17(6): 476–488.

    Article  Google Scholar 

  • Goñi, M. A., and Eglinton, T. I., 1996. Stable carbon isotopic analyses of lignin-derived CuO oxidation products by isotope ratio monitoring-gas chromatography-mass spectrometry (irm-GC-MS). Organic Geochemistry, 24(6–7): 601–615.

    Article  Google Scholar 

  • Goñi, M. A., and Hedges, J. I., 1992. Lignin dimers: Structures, distribution, and potential geochemical applications. Geochimica et Cosmochimica Acta, 56(11): 4025–4043.

    Article  Google Scholar 

  • Goñi, M. A., and Montgomery, S., 2000. Alkaline CuO oxidation with a microwave digestion system: Lignin analyses of geochemical samples. Analytical Chemistry, 72(14): 3116.

    Article  Google Scholar 

  • Hartog, N., van Bergen, P. F., de Leeuw, J. W., and Griffioen, J., 2004. Reactivity of organic matter in aquifer sediments: geological and geochemical controls. Geochimica et Cosmochimica Acta, 68(6): 1281–1292.

    Article  Google Scholar 

  • Hatcher, P. G., Nanny, M. A., Minard, R. D., Dible, S. D., and Carson, D. M., 1995. Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH). Organic Geochemistry, 23(10): 881–888.

    Article  Google Scholar 

  • Hatcher, P. G., and Clifford, D. J., 1994. Flash pyrolysis and in situ methylation of humic acids from soil. Organic Geochemistry, 21(10–11): 1081–1092.

    Article  Google Scholar 

  • Hedges, J. I., Clark, W. A., Quay, P. D., Richey, J. E., Devol, A. H., and Santos, U. M., 1986. Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography, 31(4): 717–738.

    Article  Google Scholar 

  • Hedges, J. I., and Ertel, J. R., 1982. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Analytical Chemistry, 54(2): 174–178.

    Article  Google Scholar 

  • Hedges, J. I., and Mann, D. C., 1979. The characterization of plant tissues by their lignin oxidation products. Geochimica et Cosmochimica Acta, 43(11): 1803–1807.

    Article  Google Scholar 

  • Hedges, J. I., and Parker, P. L., 1976. Land-derived organic matter in surface sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta, 40(9): 1019–1029.

    Article  Google Scholar 

  • Hernes, P. J., and Benner, R., 2003. Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. Journal of Geophysical Research, 108(C9): 3291–3299.

    Article  Google Scholar 

  • Jiang, T. D., 2001. Lignin. Chemical Industry Press, Beijing, 2–3 (in Chinese).

    Google Scholar 

  • Klingberg, A., Odermatt, J., and Meier, D., 2005. Influence of parameters on pyrolysis-GC/MS of lignin in the presence of tetramethylammonium hydroxide. Journal of Analytical and Applied Pyrolysis, 74(1–2): 104–109.

    Article  Google Scholar 

  • Kögel, I., and Bochter, R., 1985. Characterization of lignin in forest humus layers by high-performance liquid chromatography of cupric oxide oxidation products. Soil Biology and Biochemistry, 17(5): 637–640.

    Article  Google Scholar 

  • Kuo, L., Louchouarn, P., and Herbert, B. E., 2008. Fate of CuO-derived lignin oxidation products during plant combustion: Application to the evaluation of char input to soil organic matter. Organic Geochemistry, 39(11): 1522–1536.

    Article  Google Scholar 

  • Lanzalunga, O., and Bietti, M., 2000. Photo- and radiation chemical induced degradation of lignin model compounds. Journal of Photochemistry and Photobiology B: Biology, 56(2–3): 85–108.

    Article  Google Scholar 

  • Libes, S. M., 1992. An Introduction to Marine Biogeochemistry. Wiley, Chichester, 414 pp.

    Google Scholar 

  • Lobbes, J. M., Fitznar, H. P., and Kattner, G., 2000. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica et Cosmochimica Acta, 64(17): 2973–2983.

    Article  Google Scholar 

  • Lobbes, J. R. M., Fitznar, H. P., and Kattner, G., 1999. High-performance liquid chromatography of lignin-derived phenols in environmental samples with diode array detection. Analytical Chemistry, 71(15): 3008–3012.

    Article  Google Scholar 

  • Louchouarn, P., Amon, R. M. W., Duan, S., Pondell, C., Seward, S. M., and White, N., 2010. Analysis of lignin-derived phenols in standard reference materials and ocean dissolved organic matter by gas chromatography/tandem mass spectrometry. Marine Chemistry, 118(1–2): 85–97.

    Article  Google Scholar 

  • Louchouarn, P., Lucotte, M., Canuel, R., Gagn, J., and Richard, L., 1997. Sources and early diagenesis of lignin and bulk organic matter in the sediments of the Lower St. Lawrence Estuary and the Saguenay Fjord. Marine Chemistry, 58(1–2): 3–26.

    Article  Google Scholar 

  • Louchouarn, P., Opsahl, S., and Benner, R., 2000. Isolation and quantification of dissolved lignin from natural waters using solid-phase extraction and GC/MS. Analytical Chemistry, 72(13): 2780–2787.

    Article  Google Scholar 

  • Mayer, L. M., Schick, L. L., Bianchi, T. S., and Wysocki, L. A., 2009. Photochemical changes in chemical markers of sedimentary organic matter source and age. Marine Chemistry, 113(1–2): 123–128.

    Article  Google Scholar 

  • McKinney, D. E., Carson, D. M., Clifford, D. J., Minard, R. D., and Hatcher, P. G., 1995. Off-line thermochemolysis versus flash pyrolysis for the in situ methylation of lignin: Is pyrolysis necessary? Journal of Analytical and Applied Pyrolysis, 34(1): 41–46.

    Article  Google Scholar 

  • Meyers, P. A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5–6): 213–250.

    Article  Google Scholar 

  • Miltner, A., and Emeis, K., 2000. Origin and transport of terrestrial organic matter from the Oder lagoon to the Arkona Basin, Southern Baltic Sea. Organic Geochemistry, 31(1): 57–66.

    Article  Google Scholar 

  • Miltner, A., and Emeis, K., 2001. Terrestrial organic matter in surface sediments of the Baltic Sea, Northwest Europe, as determined by CuO oxidation. Geochimica et Cosmochimica Acta, 65(8): 1285–1299.

    Article  Google Scholar 

  • Opsahl, S., and Benner, R., 1995. Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications. Geochimica et Cosmochimica Acta, 59(23): 4889–4904.

    Article  Google Scholar 

  • Pepper, J. M., and Steck, W., 1963. The effect of time and temperature on the hydrogenation of aspen lignin. Canadian Journal of Chemistry, 41(11): 2867–2875.

    Article  Google Scholar 

  • Rezende, C. E., Pfeiffer, W. C., Martinelli, L. A., Tsamakis, E., Hedges, J. I., and Keil, R. G., 2010. Lignin phenols used to infer organic matter sources to Sepetiba Bay — RJ, Brasil. Estuarine, Coastal and Shelf Science, 87(3): 479–486.

    Article  Google Scholar 

  • Rommerskirchen, F., Eglinton, G., Dupont, L., and Rullkötter, J., 2006. Glacial/interglacial changes in southern Africa: Compound-specific δ13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments. Geochemistry, Geophysics, Geosystems, 7(8): 8010.

    Article  Google Scholar 

  • Shadkami, F., Sithole, B. B., and Helleur, R., 2010. Rapid screening of hardwood and softwood lignin using low temperature thermochemolysis with a GC injection port. Organic Geochemistry, 41(6): 586–594.

    Article  Google Scholar 

  • Stevenson, F. J., 1982. Humus Chemistry. John Wiley & Sons, New York, 320 pp.

    Google Scholar 

  • Tao, Y. Z., and Guan, Y. T., 2003. Study of chemical composition of lignin and its application. Journal of Cellulose Science and Technology, 11(1): 42–55.

    Google Scholar 

  • Tareq, S. M., Kitagawa, H., and Ohta, K., 2010. Lignin biomarker and isotopic records of paleovegetation and climate changes from Lake Erhai, southwest China, since 18.5 ka BP. Quaternary International, 229: 47–56.

    Article  Google Scholar 

  • Tareq, S. M., Tanaka, N., and Ohta, K., 2004. Biomarker signature in tropical wetland: lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment. Science of the Total Environment, 324(1–3): 91–103.

    Article  Google Scholar 

  • Templier, J., Derenne, S., Crou, J., and Largeau, C., 2005. Comparative study of two fractions of riverine dissolved organic matter using various analytical pyrolytic methods and a 13C CP/MAS NMR approach. Organic Geochemistry, 36(10): 1418–1442.

    Article  Google Scholar 

  • Weijers, J. W. H., Schouten, S., Schefu, E., Schneider, R. R., and Sinninghe Damsté, J. S., 2009. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments: A multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan. Geochimica et Cosmochimica Acta, 73(1): 119–132.

    Article  Google Scholar 

  • Wysocki, L. A., Filley, T. R., and Bianchi, T. S., 2008. Comparison of two methods for the analysis of lignin in marine sediments: CuO oxidation versus tetramethylammonium hydroxide (TMAH) thermochemolysis. Organic Geochemistry, 39(10): 1454–1461.

    Article  Google Scholar 

  • Xiang, R., Yang, Z., Saito, Y., Fan, D., Chen, M., Guo, Z., and Chen, Z., 2008. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea: Benthic foraminiferal and stable isotopic evidence. Marine Micropaleontology, 67(1–2): 104–119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zhang, T., Sun, S. et al. Lignin in marine environment and its analysis—A review. J. Ocean Univ. China 11, 501–506 (2012). https://doi.org/10.1007/s11802-012-1834-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-012-1834-9

Key words

Navigation