Skip to main content

Advertisement

Log in

Effects of mercuric chloride on antioxidant system and DNA integrity of the crab Charybdis japonica

  • Research Note
  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Mercury (Hg) is one of the commonly encountered heavy metals, which is widespread in inshore sediments of China. In order to investigate the toxicity of Hg on marine invertebrates, we studied the effects of the divalent mercuricion (Hg2+) (at two final concentrations of 0.0025 and 0.0050 mg L−1, prepared with HgCl2) on metallothionein (MT) content, DNA integrity (DNA strand breaks) and catalase (CAT) in the gills and hepatopancreas, antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the hemolymph, gills and hepatopancreas of the portunid crab Charybdis japonica for an experiment period up to 15 d. The results indicated that MT was significantly induced after 3 d, with a positive correlation with Hg2+ dose and time in the hepatopancreas and a negative correlation with Hg2+ dose and time in the gills. While CAT in the hemolymph was not detected, it increased in the hepatopancreas during the entire experiment; SOD and GPx in the three tissues were stimulated after 12 h, both attained peak value and then reduced during the experimental period. Meanwhile, DNA strand breaks were all induced significantly after 12 h. These results suggested the detoxification strategies against Hg2+ in three tissues of C. japonica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alex, S., and Savoie, R., 1987. A Raman spectroscopic study of the complexation of the methylmercury(II) cation by amino acids. Can. J. Chem., 65: 491–496.

    Article  Google Scholar 

  • Almeida, J. A., Diniz, Y. S., Marques, S. F. G., Faine, L. A., Ribas, B. O., Burneiko, R. C., et al., 2002. The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo Cd contamination. Environ. Int., 27: 673–679.

    Article  Google Scholar 

  • Andres, S., Laporte, J-M., and Mason, R. P., 2002. Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes sapidus). Aquat. Toxicol., 56: 303–320.

    Article  Google Scholar 

  • Asmuss, M., Mullenders, L. H., Eker, A., and Hartwig, A., 2000. Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Carcinogenesis, 21: 2097–2104.

    Article  Google Scholar 

  • Basha, P. S., and Rani, U. A., 2003. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol. Environ. Saf., 56: 218–221.

    Article  Google Scholar 

  • Baudrimont, M., Metivaud, J., Maury-Brachet, R., Ribeyre, F., and Boudou, A., 1997. Bioaccumulation and metallothionein response in the Asiatic clam (Corbicula fluminea) after experimental exposure to cadmium and inorganic mercury. Environ. Toxic. Chem., 16(10): 2096–2105.

    Article  Google Scholar 

  • Beattie, J. H., Marion, M., Schmit, J. P., and Denizeau, F., 1990. The cytotoxic effects of cadmium chloride and mercuric chloride mixtures in rat primary hepatocyte cultures. Toxicology, 62: 161–173.

    Article  Google Scholar 

  • Benes, P., and Havlik, B., 1979. Speciation of mercury in natural waters. In: The Biogeochemistry of Mercury in Environment. Nriagu, J. O., ed., Elsevier/North-Holland Biomedical Press, Amsterdam, Netherlands, 175–202.

    Google Scholar 

  • Berntssen, H. G., Aatland, A., and Handy, R. D., 2003. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behavior in Atlantic salmon (Salmo salar) parr. Aquat. Toxicol., 65: 55–72.

    Article  Google Scholar 

  • Black, M. C., Ferrell, J. R., Horning, R. C., and Martin, L. K. Jr., 1996. DNA strand breakage in freshwater mussels (Anodonta grandis) exposed to lead in the laboratory and field. Environ. Toxicol. Chem., 15: 802–806.

    Article  Google Scholar 

  • Boission, F., Hartl, M. G. J., Fowler, S. W., and Amiard-Trequet, C., 1997. Influence of chronic exposure to silver and mercury in the field on the bioaccumulation potential of the bivalve Macoma balthica. Mar. Environ. Res., 45(4/5): 325–340.

    Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72: 248–254.

    Article  Google Scholar 

  • Brouwer, M., and Brouwer, T. H., 1998. Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab, Callinectes sapidus. Arch. Biochem. Biophys., 351: 257–264.

    Article  Google Scholar 

  • Bucio, L., Souza, V., Albores, A., Sierra, A., Chávez, E., and Cárabez, A., 1995. Cdmium and mercury toxicity in a human fetal hepatic cell line (WRL-68 cells). Toxicology, 102: 285–299.

    Article  Google Scholar 

  • Cesarone, D. F., Bologenesi, C., and Santi, L., 1979. Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal. Biochem., 100: 188–197.

    Article  Google Scholar 

  • Chandra, P., and Khuda-Bukhsh, A. R., 2001. An assay of genotoxicity produced by cadmium chloride in fish (Oreochromis mossambicus) and efficacy of vitamin C in its alterations. In: Perspectives in Cytology and Genetics. Vol.10. Manna, G. K., and Roy, S. C., eds., AICCG Publ., Kalyani, India, 583–590.

    Google Scholar 

  • Chandra, P., and Khuda-Bukhsh, A. R., 2004. Genotoxic effects of cadmium chloride and azadirachtin treated singly and in combination in fish. Ecotoxicol. Environ. Saf., 58: 194–201.

    Article  Google Scholar 

  • Cheung, A. P. L., Lam, T. H. J., and Chan, K. M., 2004. Regulation of Tilapia metallothionein gene expression by heavy metal ions. Mar. Environ. Res., 58: 389–394.

    Article  Google Scholar 

  • Ching, E. W. K., Siu, W. H. L., Lam, P. K. S., Xu, L., Zhang, Y., Richardson, et al., 2001. DNA adduct formation and DNA strand breaks in green-lipped mussels (Perna viridis) exposed to benzo[a]pyrene: dose- and time-dependent relationships. Mar. Pollut. Bull., 42: 603–610.

    Article  Google Scholar 

  • Collins, A. R., Ma, A. G., and Duthie, S. J., 1995. The kinetics of repair of oxidative DNA damage (strand breaks and oxidized pyrimidines) in human cells. Mutat. Res., 336: 69–77.

    Google Scholar 

  • Company, R., Serafim, A., Bebianno, M. J,. Cosson, R., Shillito, B., and Fiala-Médioni, A., 2004. Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Mar. Environ. Res., 58: 377–381.

    Article  Google Scholar 

  • Dutton, M. D., Stephenson, M., and Klaverkamp, J. F., 1993. A. Mercury saturation assay for measuring metallothionein in fish. Environ. Toxicol. Chem., 12: 1193–1202.

    Article  Google Scholar 

  • Engel, D. W., and Brouwer, M., 1993. Crustacean as models of metal metabolism: I. Effects of the molt cycle on blue crab metal metabolism and metallothionein. Mar. Environ. Res., 35: 1–5.

    Article  Google Scholar 

  • Everaarts, J. M., and Sarkar, A., 1996. DNA damage as a biomarker of marine pollution: strand breaks in seastars (Asterias rubens) from the north sea. Water Sci. Technol., 34(7–8): 157–162.

    Google Scholar 

  • George, S. G., 1989. Cadmium effects on plaice liver xenobiotic and metal detoxification systems: dose response. Aquat. Toxicol., 15: 303–310.

    Article  Google Scholar 

  • George, S. G., Hodgson, P., Todd, K., and Tyter, P., 1996. Metallothionein Protects Against Cadmium Toxicity — Proof from Studies Developing Turbot Larvae. Mar. Environ. Res., 42(52): 1–4.

    Google Scholar 

  • Geret, F., Serafim, A., Barreira, L., and Bebianno, M.J., 2002. Response of antioxidant systems to copper in the gills of the clam Ruditapes decussates. Mar. Environ. Res., 54: 413–417.

    Article  Google Scholar 

  • Greenwald, R. A., 1985. Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, Florida, 464pp.

    Google Scholar 

  • Irato, P., Santovito, G., Piccinni, E., and Albergoni, V., 2001. Oxidative burst and metallothionein as a scavenger in macrophages. Immunol. Cell Biol., 79(3): 251–254.

    Article  Google Scholar 

  • Kanekiyo, M., Itoh, N., Kawasaki, A., Matsuda, K., Nakanishi, T., and Tanaka, K., 2002. Metallothionein is required for zinc-induced expression of the macrophage colony stimulat ing factor gene. J. Cell. Biochem., 86(1): 145–153.

    Article  Google Scholar 

  • Klaverkamp, J. F., Wautier, K., and Baron, C. L., 2000. A modified mercury saturation assay for measuring metallothionein. Aquat. Toxicol., 50: 13–25.

    Article  Google Scholar 

  • Kono, Y., and Fridovich, I., 1982. Superoxide radicals inhibit catalase. J. Biol. Chem., 257: 5751–5754.

    Google Scholar 

  • Lecoeur, S., Videmann, B., and Berny, P., 2004. Evaluation of metallothionein as a biomarker of single and combined Cd/Cu exposure in Dreissena polymorpha. Environ. Res., 94: 184–191.

    Article  Google Scholar 

  • Legras, S., Mouneyrac, C., Amiard, J. C., Amiard-Triquet, C., and Rainbow, P. S., 2000. Changes in metallothionein concentrations in response to variation in natural factors (salinity, sex, weight) and metal contamination in crabs from a metal-rich estuary. J. Exp. Mar. Biol. Ecol., 246: 259–279.

    Article  Google Scholar 

  • Maeda, M., Tsunoda, M., and Kinjo, Y., 1992. Coordination of mercury to amino acids under physiological conditions. J. Inorg. Biochem., 48: 227–232.

    Article  Google Scholar 

  • Marklund, S., and Marklund, G., 1974. Involvement of the superoxide anion radical in the auto oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47: 169–179.

    Article  Google Scholar 

  • Mason, A. Z., and Jenkins, K. D., 1992. Metal detoxificationin aquatic organisms. In: Metal Speciation and Bioavailibity in Aquatic Sysems. Tessier, A., and Turner, D. R., eds., John Wiley and Sons, New York, NY, USA, 479–608.

    Google Scholar 

  • McCord, L. M., and Fridovich, I., 1969. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055.

    Google Scholar 

  • Mouneyrac, C., Amiard-Triquet, C., Amiard, J. C., and Rainbow, P. S., 2001. Comparison of metallothionein concentrations and tissue distribution of trace metals in crabs (Pachygrapsus marmoratus) from a metal-rich estuary, in and out of the reproductive season. Comp. Biochem. Physiol. C, 129(3): 193–209.

    Google Scholar 

  • Novelli, E. L. B., Vieir, E. P., Rodrigues, N. L., and Ribas, B. O., 1998. Risk assessment of cadmium toxicity on hepatic and renal tissues of rats. Environ. Res., 79: 102–105.

    Article  Google Scholar 

  • O’Connor, T. R., Graves, R. J., de Murcia, G., Castaing, B., and Laval, J., 1993. Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and/or functional role. J. Biol. Chem., 268: 9063–9070.

    Google Scholar 

  • Olive, P. L., 1999. DNA damage and repair in inidividual cells: applications of the comet assay in radiobiology. Int. J. Radiat. Biol., 75: 395–405.

    Article  Google Scholar 

  • Pedersen, S. N., Lundebye, A. K., and Depledge, M. H., 1997. Field application of metallothionein and stress protein biomarkers in the shore crab (Carcinus maenas) exposed to trace metals. Aquat. Toxicol., 37: 183–200.

    Article  Google Scholar 

  • Pruski, A. M., and Dixon, D. R., 2002. Effects of cadmium on nuclear integrity and DNA repair efficiency in the gill cells of Mytilus edulis L. Aquat. Toxicol., 57: 127–137.

    Article  Google Scholar 

  • Regoli, F., and Orlando, E., 1994. Accumulation and subcellular distribution of metals (Cu, Fe, Mn, Pb and Zn) in the Mediterranean mussel Mylilus galloprovincialis during a field transplant experiment. Mar. Pollut. Bull., 28: 592–600.

    Article  Google Scholar 

  • Reid, S. R., and Podányi, B., 1988. A proton NMR study of the glycine-mercury(II) system in aqueous solution. J. Inorg. Biochem., 32: 183–195.

    Article  Google Scholar 

  • Shugart, L. R., 1988b. An alkaline unwinding assay for the detection of DNA damage in aquatic organisms. Mar. Environ. Res., 24: 321–325.

    Article  Google Scholar 

  • Shurgart, L.R., 1988a. Quantitation of chemically induced damage to DNA of aquatic organisms by alkaline unwinding assay. Aquat. Toxicol., 13: 43–52.

    Article  Google Scholar 

  • Silva, A. M. M., Novelli, E. L. B., Fascineli, M. L., and Almeida, J. A., 1999. Impact of an environmentally realistic intake of water contaminants and superoxide formation on tissues of rats. Environ. Pollut., 105: 243–249.

    Article  Google Scholar 

  • Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L., 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 175: 184–191

    Article  Google Scholar 

  • Venugopal, N. B. P. K, Ramesh, T. V. D. D., Reddy, D. S., and Reddy, S. L. N., 1997. Effect of cadmium on antioxidant enzyme activities and lipid peroxidation in a freshwater field crab, Barytelphusa guerini. Bull. Environ. Contam. Toxicol., 59(1): 132–138.

    Article  Google Scholar 

  • Viarengo, A., 1990. Heavy metal effects on lipid peroxidation in the tissues of Mytilus galloprovincialis Lam. Comp. Biochem. Physiol., 97C(1): 37–42.

    Google Scholar 

  • Winston, G. W., and Di Giulio, R. T., 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol., 19: 137–161.

    Article  Google Scholar 

  • Xia, Y. M., and Zhu, L. Z., 1987. Measurement method of glutathione peroxidase activity in blood and tissue. J. Hygiene Res., 16: 29–33 (in Chinese with English abstract).

    Google Scholar 

  • Xu, H. Z., Zhou, C. G., Ma, Y. A., Shang, L. S., Yao, Z. W., and Li, H., 2000. Environmental quality of deposits in offshore zone of China. Environ. Prot. Transp., 21: 16–18 (in Chinese with English abstract).

    Google Scholar 

  • Xu, X. D., Lin, Z. H., and Li, S. Q., 2005. The studied of the heavy metal pollution of Jiaozhou Bay. Mar. Sci. 29: 48–53 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, H. X., Pan, L. Q., and Wang, J., 2008. Effects of three kinds of heavy metal ions on microstructure of hepatopancreas and gills in Charybdis japonica. Trans. Oceanol. Limnol., 4: 25–29 (in Chinese with English abstract).

    Google Scholar 

  • Zoll, C., Saouter, E., Boudou, A., Ribeyre, F., and Jaylet, A., 1988. Genotoxicity and bioaccumulation of methyl mercury and mercuric chloride in vivo in the newt Pleurodeles waltl. Mutagenesis, 3: 337–343 (in Chinese with English abstract).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luqing Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Pan, L., Miao, J. et al. Effects of mercuric chloride on antioxidant system and DNA integrity of the crab Charybdis japonica . J. Ocean Univ. China 8, 416–424 (2009). https://doi.org/10.1007/s11802-009-0416-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-009-0416-y

Key words

Navigation