Skip to main content
Log in

Size distribution of submarine landslides along the middle continental slope of the East China Sea

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

This paper investigates the size distribution of submarine landslides on the middle continental slope of the East China Sea (ECS) using the size of the landslide source regions. Geomorphometric mapping is used to identify 102 mass movements from multibeam bathymetric data and to extract morphological information about the head scarps and side walls. These mass movements have areas ranging between 0.06 km2 and 15.51 km2 and volumes between 0.002 km3 and 2 km3. The area vs volume relationship of these failure scarps is approximately linear, suggesting a fairly uniform failure thickness in each event with scarce deep excavating landslides. The cumulative area distribution of the slope failures can be described by an inverse power law. The submarine landslides on the mid-ECS continental slope could be considered as a large-scale self-organizing system because they have the characteristics of a dissipative system in a critical state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bak, P., Tang, C., and Wiesenfield, K., 1987. Self-organ- ized criticality: an explanation of 1/f noise. Phys. Rev. Lett., 59: 381–384.

    Article  Google Scholar 

  • Canals, M., Lastras, G., Urgeles, R., Casamor, J. L., Mienert, J., Cattaneo, A., et al., 2004. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar. Geol., 213: 9–72. doi: 10.1016/j.margeo.2004.10.001.

    Article  Google Scholar 

  • Chaytor, J. D., ten Brink, U. S., Solow, A. R., and Andrews B. D., 2009. Size distribution of submarine landslides along the U.S. Atlantic margin. Mar. Geol., 264: 16–27. doi: 10.1016/j.margeo.2008.08.007.

    Article  Google Scholar 

  • Dai, F. C., and Lee, C. F., 2001. Frequency-volume relation and prediction of rainfall-induced landslides. Eng. Geol., 59: 253–266.

    Article  Google Scholar 

  • Dussauge, C., Grasso, J., and Helmstetter, A., 2003. Statistical analysis of rockfall volume distributions: implication for rockfall dynamics. J. Geophys. Res., 108(B6): 2286–2294.

    Article  Google Scholar 

  • Georgiopoulou, A., Krastel, S., Masson, D. G., and Wynn, R. B., 2007. Repeated instability of the NW African margin related to buried landslide scarps. In: Submarine Mass Movements and their Consequences. Lykousis, V., et al., eds., 3rd International Symposium, Dordrecht, Netherlands, Springer, 29–36.

    Chapter  Google Scholar 

  • Green, A., and Uken, R., 2008. Submarine landsliding and canyon evolution on the northern KwaZulu-Natal continental shelf, South Africa, SW Indian Ocean. Mar. Geol., 254: 152–170. doi:10.1016/j.margeo.2008.06.001.

    Article  Google Scholar 

  • Guthrie, R. H., and Evans, S.G., 2004. Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf. Process. Landf., 29: 1321–1339.

    Article  Google Scholar 

  • Hu G. H., Yan, T., Wu, Y. T., Chen, Y. L., and Zhao, Y. X., 2009. Methodology for morphological analysis of submarine mass movement in the continental slope of the East China Sea. Period. Ocean Univ. China, 39(2): 309–312 (in Chinese with English abstract).

    Google Scholar 

  • Issler, D., de Blasio, F. V., Elverhoi, A., Bryn, P., and Lien, R., 2005. Scaling behavior of clay rich submarine debris flows. Mar. Pet. Geol., 22: 187–194.

    Article  Google Scholar 

  • Leynaud, L., Mienert, J., and Vanneste, M., 2009. Submarine mass movements on glaciated and non-glaciated European continental margins: A review of triggering mechanisms and preconditions to failure. Mar. Pet. Geol., 26: 618–632.

    Article  Google Scholar 

  • Liu, Z., Berne, S., Saito, Y., Lericolais, G., and Marsset, T., 2000. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea. J. Asian Earth Sci., 18: 444–452.

    Google Scholar 

  • Liu, Z. C., Chen, Y. L., Ding, J. S., Zhang, W. H., and Wu, Y. T., 2003. Study on zoned characteristics and formation cause of the East China Sea submarine topography. Adv. Mar. Sci., 21(2): 160–173 (in Chinese with English abstract).

    Google Scholar 

  • Locat, J., and Lee, H. J., 2002. Submarine landslides: advances and challenges. Can. Geotech. J., 39: 193–212.

    Article  Google Scholar 

  • Marsset, T., Marsset, B., Thomas, Y., Cattaneo, A., Thereau, E., Trincardi, F., et al., 2004. Analysis of Holocene sedimentary features on the Adriatic shelf from 3D very high resolution seismic data (Triad survey). Mar. Geol., 213: 73–89. doi: 10.1016/j.margeo.2004.10.002.

    Article  Google Scholar 

  • Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., and Lovholt, F., 2006. Submarine landslides: processes, triggers and hazard prediction. Philos. Trans. R. Soc. London, 364 (1845): 2009–2039.

    Article  Google Scholar 

  • McAdoo, B. G., Pratson, L. F., and Orange, D. L., 2000. Submarine landslides geomorphology, US continental slope. Mar. Geol., 169: 103–136.

    Article  Google Scholar 

  • Micallef, A., Berndt, C., Masson, D. G., and Stow, D. A. V., 2008. Scale invariant characteristics of the Storegga Slide and implications for large-scale submarine mass movements. Mar. Geol., 247: 46–60.

    Article  Google Scholar 

  • Hampton, M. A., Lee, H. J., and Locat, J., 1996. Submarine landslides. Rev. Geophys., 34: 33–59.

    Article  Google Scholar 

  • Sugai, T., Ohmori, H., and Hirano, M., 1994. Rock control on magnitude-frequency distribution of landslides. Trans. Jpn. Geomorphol. Union, 15: 233–251.

    Google Scholar 

  • ten Brink, U. S., Giest, E. L., and Andrews, B. D., 2006. Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys. Res. Lett., 33, L11307, doi: 10.1029/2006GL026125.

    Article  Google Scholar 

  • Twichell, D. C., Chaytor, J. D., ten Brink, U. S., and Buczkowski, B., 2009. Morphology of late quaternary submarine landslides along the U.S. Atlantic continental margin. Mar. Geol., 264: 4–15. doi: 10.1016/j.margeo.2009.01.009.

    Article  Google Scholar 

  • Yin, P., Berne, B., Vagner, P., Loubrieu, B., and Liu, Z., 2003. Mud Volcanoes at the Shelf Margin of the East China Sea. Mar. Geol., 194: 135–149.

    Article  Google Scholar 

  • Zhao, Y. X., 2006. Morphology and dominant controlling factors of submarine canyons in the slope of the East China Sea. Ocean University of China, PHD. Dissertation, 106pp. (in Chinese).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxia Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, G., Yan, T., Liu, Z. et al. Size distribution of submarine landslides along the middle continental slope of the East China Sea. J. Ocean Univ. China 8, 322–326 (2009). https://doi.org/10.1007/s11802-009-0322-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-009-0322-3

Key words

Navigation