Skip to main content
Log in

Sex determination mechanisms in fish

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In fish, sex determination (SD) system shows high variation. The SD mechanisms include environmental and genetic regulation. The research on SD system and related genes in intensively studied fish species was reviewed. Although some genes have been described as sex-related, only DMRT1bY can be considered as a master sex determination gene and none of them has been utilized in aquaculture. The variation of fish SD system, the importance of sex-related genes in evolution research and the relations between environmental factors and sex-related genes were also discussed. The fish sex determination mechanism remains largely unknown. Further research needs to be done considering the significance of fish SD studies in basic and applied aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, K., 2000. Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture, 197: 205–228.

    Article  Google Scholar 

  • Artieri, C. G., Mitchell, L. A., and Ng, S. H., 2006. Identification of the sex-determining locus of Atlantic salmon (Salmo salar) on chromosome 2. Cytogenet. Genome Res., 112(1–2): 152–159.

    Article  Google Scholar 

  • Baron, D., Houlgatte, R., Fostier, A., and Guiguen, Y., 2008. Expression profiling of candidate genes during ovary-to-testis trans-differentiation in rainbow trout masculinized by androgens. Gen. Comp. Endocrinol., 156: 369–378.

    Article  Google Scholar 

  • Beamish, F. W. H., 1993. Environmental sex determination in southern brook lamprey, Ichthyomyzon gagei. Can. J. Fish. Aquat. Sci., 50: 1299–1307.

    Article  Google Scholar 

  • Blazquez, M., and Piferrer, F., 2004. Cloning, sequence analysis, tissue distribution, and sex-specific expression of the neural form of P450 aromatase in juvenile sea bass (Dicentrarchus labrax). Mol. Cell. Endocrinol., 219: 83–94.

    Article  Google Scholar 

  • Blazquez, M., and Piferrer, F., 2005. Sea bass (Dicentrarchus labrax) androgen receptor: cDNA cloning, tissue-specific expression, and mRNA levels during early development and sex differentiation. Mol. Cell. Endocrinol., 237: 37–48.

    Article  Google Scholar 

  • Bowles, J., Schepers, G., and Koopman, P., 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol., 227: 239–255.

    Article  Google Scholar 

  • Chai, C., and Chan, W. K., 2000. Developmental expression of a novel Ftz-F1 homologue, ff1b (NR5A4), in the zebrafish Danio rerio. Mech. Dev., 91: 421–426.

    Article  Google Scholar 

  • Chiang, E. F., Pai, C. I., Wyatt, M., Yan, Y. L., Postlethwait, J., and Chung, B., 2001. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev. Biol., 231: 149–163.

    Article  Google Scholar 

  • Clarkson, M. J., and Harley, V. R., 2002. Sex with two SOX on: SRY and SOX9 in testis development. Trends Endocrin. Metab. 13: 106–111.

    Article  Google Scholar 

  • Devlin, R. H., and Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological and environmental influences. Aquaculture 208: 191–364.

    Article  Google Scholar 

  • Filby, A., Thorpe, K., Maack, G., and Tyler, C., 2007. Gene expression profiles revealing the mechanisms of anti-androgen and estrogen-induced feminization in fish. Aquat. Toxicol., 81: 219–231.

    Article  Google Scholar 

  • Galay-Burgos, M., Llewellyn, L., Mylonas, C. C., Canario, A. V. M., Zanuy, S., and Sweeney, G. E., 2003. Analysis of the Sox gene family in the European sea bass(Dicentrarchus labrax). Comp. Biochem. Physiol. Part B, 137: 279–284.

    Article  Google Scholar 

  • Graves, J. A. M., 2002. The rise and fall of the SRY. Trends Genet., 18: 259–264.

    Article  Google Scholar 

  • Halm, S., Martinez-Rodriguez, G., Rodr’ıguez, L., Prat, F., Mylonas, C., C., Carrillo, M., et al., 2004. Cloning, characterisation, and expression of three oestrogen receptors (ERα, ERβ1 and ERβ2) in the European sea bass, Dicentrarchus labrax. Mol. Cell. Endocrinol., 223: 63–75.

    Article  Google Scholar 

  • Halm, S., Rocha, A., Miura, T., Prat, F., and Zanuy, S., 2007. Anti-Mullerian hormone (AMH) in the European sea bass: Its gene structure, regulatory elements, and the expression of alter- natively-spliced isoforms. Gene, 388: 148–158.

    Article  Google Scholar 

  • Hayes, T., 1998. Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms. J. Exp. Zool., 281: 373–399.

    Article  Google Scholar 

  • Hofsten, J. V., and Olsson, P., 2005. Zebrafish sex determination and differentiation: Involvement of FTZ-F1 genes. Reprod. Biol. Endocrinol., 2005, 3: 63.

    Article  Google Scholar 

  • Hsu, H. J., Lin, G., and Chung, B. C., 2003. Parallel early development of zebrafish interrenal glands and pronephros: differential control by wt1 and ff1b. Development, 130: 2107–2116.

    Article  Google Scholar 

  • Jeyasuria, P., and Place, A. R., 1998. Embryonic brain-gonadal axis in temperature-dependent sex determination of reptiles: a role for P450 aromatase (CYP19). J. Exp. Zool, 281: 428–449.

    Article  Google Scholar 

  • Kazeto, Y., Ijiri, S., Place, A. J., Zohar, Y., and Trant, J. M., 2001. The 5′-flanking regions of CYP19A1 and CYP19A2 in zebrafish. Biochem. Biophys. Res. Commun., 288: 503–508.

    Article  Google Scholar 

  • Klüver, N., 2007. Differential expression of anti-Mül- lerian hormone (amh) and anti-Müllerian hormone receptor type II (amhrII) in the teleost Medaka. Dev. Dyn., 236, 271–281.

    Article  Google Scholar 

  • Kondo, M., Froschauer, A., and Kitano, A., 2002. Molecular cloning and characterization of DMRT genes from the medaka Oryzias latipes and the platyfish Xiphophorus maculates. Gene, 295: 213–222.

    Article  Google Scholar 

  • Krueger, W. H., and Oliveira, K., 1999. Evidence for Environmental Sex Determination in the American eel, Anguilla rostrata. Environ. Biol. Fishes, 55: 381–389.

    Article  Google Scholar 

  • Liu, D., Drean, Y. L., Ekker, M., Xiong, F., and Hew, C. L., 1997. Teleost FTZ-F1 homolog and its splicing variant determine the expression of the salmon gonadotropin II subunit gene. Mol. Endocrinol., 11: 877–890.

    Article  Google Scholar 

  • Liu, Y. W., Gao, W., The, H. L., Tan, J. H., and Chan, W. K., 2003. Prox1 Is a Novel Coregulator of Ff1b and Is Involved in the Embryonic Development of the Zebra Fish Interrenal Primordium. Mol. Cell. Biol., 23: 7243–7255.

    Article  Google Scholar 

  • Manolakou, P., Lavranos, G., and Angelopoulou, R., 2006. Molecular patterns of sex determination in the animal kingdom: a comparative study of the biology of reproduction. Reprod. Biol. Endocrinol., 4: 59.

    Article  Google Scholar 

  • Miura, T., Miura, C., Konda, Y., and Yamauchi, K., 2002. Sperma-togenesispreventing substance in Japanese eel. Development, 129: 2689–2697.

    Google Scholar 

  • Nagler, J. J., Cavileer, T., Sullivan, J., Cyr, D. G., and Rexroad, C., 2007. The complete nuclear estrogen receptor family in the rainbow trout: discovery of the novel ERα2 and both ERβ isoforms. Gene, 3392: 164–173.

    Article  Google Scholar 

  • Piferrer, F., Blázquez, M., Navarro, L., and González, A., 2005. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen. Comp. Endocrinol., 142: 102–110.

    Article  Google Scholar 

  • Rehberg, S., Lischka, P., Glaser, G., Stamminger, T., Wegner, M., and Rosorius, O., 2002. Sox10 is an active nucleo-cytoplasmic shuttle protein and shuttling is crucial for Sox10- mediated transactivation. Mol. Cell. Biol., 22: 5826–5834.

    Article  Google Scholar 

  • Rodriguez-Mari, A., Yan, Y. L., Bremiller, R. A., Wilson, C., Canestro, C., and Postlethwait, J. H., 2005. Characterization and expression pattern of zebrafish Anti-Mullerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr. Patterns, 5, 655–667.

    Article  Google Scholar 

  • Romer, U., and Beisenherz, W., 1996. Environmental determination of sex in Apistogramma (Cichlidae) and 2 other fresh- water fishes (Teleostei). J. Fish Biol., 48: 714–725.

    Google Scholar 

  • Schartl, M., 2004. Sex chromosome evolution in non-mammalian vertebrates. Curr. Opin. Genet. Dev., 14: 634–641.

    Article  Google Scholar 

  • Schepers, G. E., Teasdale, R. D., and Koopman, P., 2002. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcriptionn factor gene families. Dev. Cell, 3: 167–170.

    Article  Google Scholar 

  • Scott, G., 2008. Molecular characterization and sex-specific tissue expression of estrogen receptor α (esr1), estrogen receptor βa (esr2a) and ovarian aromatase (cyp19a1a) in yellow perch (Perca flavescens). Comp. Biochem. Physiol., 149: 126–147

    Article  Google Scholar 

  • Shapiro, D. V., 1994. Sex change in fishes—how and why? In: The Differences Between the Sexes. Short, R., V., and Balaban, E., eds., Cambridge University Press, Cambridge, UK, 105–131.

    Google Scholar 

  • Shen, X., Cui, J., Yang, G., Gong Q., and Gu Q., 2007. Expression Detection of DMRTs and Two sox9 Genes in Takifugu rubripes (Tetraodontidae, Vertebrata). J. Ocean Univ. China (Oceanic and Coastal Sea Research) 6(2): 182–186.

    Google Scholar 

  • Sunobe, T., and Nakazono, 1993. Sex change in both directions by alteration of social dominance in Trimma okinawae (Pisces: Gobiidae). Ethology, 94: 339–345.

    Article  Google Scholar 

  • Uchida, D., Yamashita, M., Kitano, T., and Iguchi, T., 2002. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J. Exp. Biol., 205: 711–718.

    Google Scholar 

  • Uchida, D., Yamashita, M., Kitano, T., and Iguchi, T., 2004. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol., 137: 11–20.

    Article  Google Scholar 

  • Valle, L. D., Lunardi, L., Colombo, L., and Belvedere, P., 2002. European sea bass (Dicentrarchus labrax L.) cytochrome P450arom: cDNA cloning, expression and genomic organization. J. Steroid Biochem. Mol. Biol., 80: 25–34.

    Article  Google Scholar 

  • Veith, A. M., Froschauer, A., Korting, C., Nanda, I., Hanel, R., and Schmid, M., 2003. Cloning of the dmrt1 gene of Xiphophorus maculatus: dmY/dmrt1Y is not the master sex-determining gene in the platyfish. Gene, 317: 59–66.

    Article  Google Scholar 

  • Wakimoto, B. T., Turner, F. R., and Kaufman, T. C., 1984. Defects in embryogenesis in mutants associated with the antennapedia gene complex of Drosophila melanogaster. Dev. Biol., 102: 147–72.

    Article  Google Scholar 

  • Ward, R. D., 2002. The genetics of fish populations. In: The Handbook of Fish and Fisheries, Fish Biology vol. 1. Hart, P. J. B., and Reynolds, J. D., eds., Blackwell Science, Oxford, 200–224.

    Chapter  Google Scholar 

  • Watanabe, M., Tanaka, M., Kobayashi, D., Yoshiura, Y., Oba, Y., and Nagahama, Y., 1999. Medaka (Oryzias latipes) FTZ-F1 potentially regulates the transcription of P-450 aromatase in ovarian follicles: cDNA cloning and functional character- ization. Mol. Cell. Endocrinol., 149: 221–228.

    Article  Google Scholar 

  • Yamamoto, E., 1998. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture, 173: 235–246.

    Article  Google Scholar 

  • Yoshinaga, N., Shiraishi, E., Yamamoto, T., Iguchi, T., Abe, S., and Kitano, T., 2004. Sexually dimorphic expression of a teleost homologue of Mullerian inhibiting substance during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem. Biophys. Res. Commun., 322: 508–513.

    Article  Google Scholar 

  • Yoshiura, Y., Senthilkumaran, B., Watanabe, M., Yuichi, O., Kobayashi, T., and Nagahama, Y., 2003. Synergistic expression of Ad4BP/SF-1 and cytochrome P-450 aromatase (ovarian type) in the ovary of Nile tilapia, Oreochromis niloticus, during vitellogenesis suggests transcriptional interaction. Biol. Reprod., 68: 1545–1553.

    Article  Google Scholar 

  • Zanuy, S., Carrillo, M., Felip, A., Rodríguez, L., Blázquez, M., and Ramos, J., 2001. Genetic, hormonal and environmental approaches for the control of reproduction in the European sea bass (Dicentrarchus labrax L.). Aquaculture, 202: 187–203.

    Article  Google Scholar 

  • Zhu, L., Wilken, J., Phillips, N. B., Narendra, U., Chan, G., and Stratton, S. M., 2000. Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers. Genes Dev., 14: 1750–1764.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanqi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Sun, X., Qi, J. et al. Sex determination mechanisms in fish. J. Ocean Univ. China 8, 155–160 (2009). https://doi.org/10.1007/s11802-009-0155-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-009-0155-0

Key words

Navigation