Skip to main content
Log in

Variations in the lower level of the PBL associated with the Yellow Sea fog-new observations by L-band radar

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The Chinese east coastal areas and marginal seas are foggy regions. The development of effective forecasting methods rests upon a comprehensive knowledge of the fog phenomena. This study provides new observations associated with the sea fogs over the northwestern Yellow Sea by means of L-band radar soundings with a high vertical resolution of 30 m. The monthly temperature lapse rate, the Richardson Numbers, and the humidity show obvious seasonal variations in the lower level of the planetary boundary layer (PBL) that are related to the onset, peak and end of the Yellow Sea fog season. The typical pattern of stratification for the sea fog season in the northwestern Yellow Sea is that a stable layer of about 400 m thick caps a 150 m conditionally unstable layer. Besides, the differences between fogs and stratus clouds in terms of humidity, turbulence and temperature are analyzed, which is of significance for sea fog forecast and detection by satellites. The thickness of the sea fogs varies in different stages of the fog season, and is associated with the temperature inversion. The numerical simulation proves that the seasonal variations obtained by the radar well represent the situations over the Yellow Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, X. W., X. Wang, L. T. Sun, and F. X. Zhou, 2005. The weatherproof detection system of sea fog by remote sensing and its applications. High Technol. Lett., 15(1): 101–106.

    Google Scholar 

  • Dudhia, J., 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46: 2077–3107

    Google Scholar 

  • Fu, G., J. Q. Wang, M. G. Zhang, J. T. Guo, M. K. Guo, and K. C. Guo, 2004. An observational and numerical study of a sea fog event over the Yellow Sea on 11 April, 2004. Period. Ocean Univ. Chin., 34(5): 720–726 (in Chinese with English abstract).

    Google Scholar 

  • Fu, G., J. T. Guo, P. Angeline, and P. Y. Li, 2008. An analysis and modeling study of a sea fog event over the Yellow and Bohai Seas. J. Ocean Univ. Chin., 7(1): 27–34, doi 10.1007/S11802-008-0027-Z.

    Article  Google Scholar 

  • Gao, S. H., H. Lin, B. Shen, and G. Fu, 2007. A heavy sea fog event over the Yellow Sea in March 2005: analysis and numerical modeling. Adv. Atmos. Sci., 24(1): 65–81.

    Article  Google Scholar 

  • Hu, R. J., K. H. Dong, and F. X. Zhou, 2006. Numerical experiments with the advection, turbulence and radiation effects in the sea fog formation process. Adv. Mar. Sci., 20(1): 25–32 (in Chinese).

    Google Scholar 

  • Kain, J. S., and J. M. Fritsch, 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47: 2784–2802.

    Article  Google Scholar 

  • Kain, J. S., and J. M. Fritsch, 1993. Convective parameterization for mesoscale models: the Kain-Fritcsh scheme, the representation of cumulus convection in numerical models. K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 246pp.

  • Kong, N. Q., 1997. Characteristic analysis of sea fog along Guangxi coast. J. Guangxi Meteorol., 18(2): 41–45 (in Chinese).

    Google Scholar 

  • Leipper, D. F., 1948. Fog development at San Diego, California. J. Mar. Res., 7: 337–346.

    Google Scholar 

  • Leipper, D. F., 1994. Fog on the U.S. west coast: a review. Bull. Amer. Meteor. Soc., 75: 229–240.

    Article  Google Scholar 

  • Lewis, J. M., D. Koracin, and K. T. Redmond, 2004. Sea fog research in the United Kingdom and United States: a historical essay including outlook. Bull. Amer. Meteor. Soc., 85:395–408.

    Article  Google Scholar 

  • Li, Z. H., L. M. Zhang, and Q. H. Zhang, 1994. The physical structure of the winter fog in Chongqing metropolitan area and its formation process. Act. Meteorol. Sin.. 8(3): 316–328.

    Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983. Bulk parameterization of the snow field in a cloud model. J. Clim., 22: 1065–1092.

    Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14): 16 663–16 682.

    Article  Google Scholar 

  • Monin, A. S., and A. M. Obukhov, 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci., USSR, 151: 163–187.

    Google Scholar 

  • Pelié, R. J., E. J. Mack, C. W. Rogers, U. Katz, and W. C. Kochmond, 1979. The formation of marine fog and the development of fog-stratus systems along the California coast. J. Appl. Meteor., 18: 1275–1286.

    Article  Google Scholar 

  • Ralph, F. M, L. Armi, J. M. Bane, C. Dorman, W. D. Neff, P. J. Neiman, et al., 1998. Observations and analysis of the 10–11 June 1994 coastally trapped disturbance. Mon. Weather Rev., 126(9): 2435–2465.

    Article  Google Scholar 

  • Stull, R. B., 1990. An Introduction to Boundary Layer Meteorology (Atmospheric Sciences Library, Dordrecht: Kluwer, 1988) Xu J. Q. and Yang D. R., trans., Ocean University of Qingdao press, Qingdao, 666pp.

    Google Scholar 

  • Teleford, J. W., and S. K. Chai, 1984. Inversions,and fog, stratus and cumulus formation in warm air over colder water. Bound.-Layer Meteor., 29: 109–137.

    Google Scholar 

  • Thompson, W. T., S. D. Burk, and J. Lewis, 2005. Fog and low clouds in a coastally trapped disturbance, J. Geophysical Res., 110, D18213, doi:10.1029/2004JD005522.

  • Thompson, W. T., T. Haack, J. D. Doyle, and S. D. Burk, 1997. Anonhydrostatic mesoscale simulation of the 10–11 June 1994 coastally trapped wind reversal. Mon. Weather Rev., 125:3211–3230.

    Article  Google Scholar 

  • Wang, B. H., 1983. Sea Fog. Ocean Press, Beijing, 352pp (in Chinese).

    Google Scholar 

  • Wang, Y. M, 1990. The Atmospheric Physics. Ocean University of Qingdao Press, Qingdao, 467pp.

    Google Scholar 

  • Xu, X. R., 1997. Characteristics and the causes of sea fog in the northern part of Jiaodong Peninsula. Mar. Forecast., 14(2):58–63 (in Chinese).

    Google Scholar 

  • Xu, Y. F., S. Q. Chen, Q. Y. Dai, and J. W. Ye, 2002. Regularity and formation cause analyses of fog in Zhoushan sea area in spring. Mar. Forecast., 19(3): 60–64 (in Chinese).

    Google Scholar 

  • Zhang, S. P., and X. W. Bao, 2008. The main advances in sea fog research in China. Period. Ocean Univ. Chin., 38(3) (in press).

  • Zhang, S. P., S. P. Xie, Q. Y. Liu, Y. Q. Yang, X. G. Wang, and Z. P. Ren, 2008. Seasonal variations of yellow sea fog. Submitted to J.Clim..

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Ren, Z., Liu, J. et al. Variations in the lower level of the PBL associated with the Yellow Sea fog-new observations by L-band radar. J. Ocean Univ. China 7, 353–361 (2008). https://doi.org/10.1007/s11802-008-0353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-008-0353-1

Key words

Navigation