Skip to main content
Log in

Numerical simulation on the interaction of an internal solitary wave with a step-type topography

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Based on a nonhydrostatic numerical ocean model developed by one of the authors, the interaction of an internal solitary wave with a step-type topography was investigated. Over the step topography, the flow pattern could be classified into three categories: 1) the propagation and spatial structure of the internal solitary wave was little influenced by the bottom topography, 2) the internal solitary wave was significantly distorted by the blocking effect of the topography without the occurrence of wave breaking and 3) the internal solitary wave was broken as it encountered and passed over the bottom topography. A detailed description of the processes leading to wave breaking is given in this paper together with energy budget analysis. The results revealed that the maximum of the energy dissipation rate is no more than 40%, which is consistent with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apel, J. R., J. R. Holbrock, A. K. Liu, and J. J. Tsai, 1985. The Sulu Sea internal soliton experiment, J. Phys. Oceanogr., 15(12): 1625–1651.

    Article  Google Scholar 

  • Apel, J. R., L. A. Ostrovsky, and Yu. A. Stepanyants, 1995. Internal solitons in the ocean, Technical Report. MERCJRA-0695, the Johns Hopkins University, USA.

    Google Scholar 

  • Benjamin, T. B., 1967. Internal waves of permanent form in fluids of great depth. J. Fluid Mech., 29: 559–592.

    Article  Google Scholar 

  • Chen, C. Y., R. C. Hsu, M. H. Chen, H. H. Chen, and C. F., Kuo, 2007a. An investigation on internal solitary waves in a two layer fluid: propagation and reflection from steep slopes. Ocean Eng., 34: 171–184.

    Article  Google Scholar 

  • Chen, C. Y., R. C., Hsu, M. H., Chen, H. H., Chen, C. F., Kuo and M. H., Cheng, 2007b. Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Eng., 34: 157–170.

    Article  Google Scholar 

  • De Silva, I. P. D., J. Imberger, and G. N. Ivey, 1997. Localized mixing due to a breaking internal wave ray at a sloping bed. J. Fluid Mech. 350: 159–177.

    Article  Google Scholar 

  • Diebels, S., B. Schuster, and K. Hutter, 1994. Nonlinear internal waves over variable topography, Geophys. Astrophys. Fluid Dyn., 76(1): 165–192.

    Article  Google Scholar 

  • Djordjevic, V. D., and L. G. Redekopp, 1978. The fission and disintegration of internal solitary waves moving over Two-dimensional topography. J. Phys. Oceanogr., 8(6): 1016–1024.

    Article  Google Scholar 

  • Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C. S. Chiu et al., 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE J. Ocean Eng., 29(4): 1105–1130.

    Article  Google Scholar 

  • Gerkema, T. and J. T. F. Zimmerman, 1994. Generation of nonlinear internal tides and solitary waves. J. Phys. Oceanogr., 25(1): 1081–1094.

    Google Scholar 

  • Halpern, D., 1971. Observations of short period internal waves in Massachusetts Bay. J. Mar. Res., 29: 116–132.

    Google Scholar 

  • Helfrich, K. R., 1992. Internal solitary waves breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133–154.

    Article  Google Scholar 

  • Kao, T. W., F. S. Pan, and D. Renouard, 1985. Internal solitons on the pycnocline: generation, propagation, and shoaling and breaking over a slope. J. Fluid Mech., 159: 19–53.

    Article  Google Scholar 

  • Koop, C., and G. Butler, 1981. An investigation of internal solitary wave in a two fluid system. J. Fluid Mech., 112: 225–251.

    Article  Google Scholar 

  • Long, R. R., 1956. Solitary waves in one and two fluid systems. Tellus, 8: 460–471.

    Article  Google Scholar 

  • Maxworthy, T., 1979. A note on the internal solitary waves produced by tidal flow over three-dimensional ridge. J. Geophys. Res., 84(C1): 338–346.

    Article  Google Scholar 

  • Michallet, H., and E. Barthelemy, 1998. Experimental study of solitary waves. J. Fluid Mech., 366: 159–177.

    Article  Google Scholar 

  • Michallet, H., and G. M. Ivey, 1999. Experiments on mixing due to internal solitary waves breaking on uniform slopes. J. Geophys. Res., 104(C6): 13 467–13 477.

    Article  Google Scholar 

  • Osborne, A. R., and T. I. Burch, 1980. Internal solitons in the AndamanSea. Nature, 208: 451–469.

    Google Scholar 

  • Osborne, A. R., T. I. Burch, and R. I. Scarlet, 1978. The influence of internal waves on deep water drilling. J. Pet. Tech., 30: 1497–1509.

    Google Scholar 

  • Ostrovsky, L. A., and Yu. A. Stepanyants, 1989. Do internal solitons exist in the ocean? Rev. Geophys., 27(3): 293–310.

    Article  Google Scholar 

  • Sandstrom, H., and J. A. Elliott, 1984. Internal tide and solitons on the Scotian Shelf: A nutrient pump at work. J. Gephys. Res., 89(C10): 6415–6426.

    Article  Google Scholar 

  • Sveen, J. K., Y. K. Guo, P. A. Davies, and J. Grue, 2002. On the breaking of internal solitary waves at a ridge. J. Fluid Mech. 469: 161–188.

    Article  Google Scholar 

  • Vlasenko, V. I., and K. Hutter, 2002. Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr., 32(6): 1779–1793.

    Article  Google Scholar 

  • Vlasenko, V., N. Stashchuk, and K. Hutter, 2005. Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press, Cambridge, 371pp.

    Google Scholar 

  • Wessels, F., and K. Hutter, 1996. Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr., 26(1): 5–20.

    Article  Google Scholar 

  • Xu, Z. T., G. J. Shen, and S. P. Shen, 2005. A correction of the 2D KdV equation of Djordjevic and Redekopp in exponentially stratified fluid. Acta Mech. Sin., 21(4): 346–352.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoting Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Li, Q., Chen, X. et al. Numerical simulation on the interaction of an internal solitary wave with a step-type topography. J. Ocean Univ. China 7, 119–123 (2008). https://doi.org/10.1007/s11802-008-0119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-008-0119-9

Key words

Navigation