Skip to main content
Log in

Comparative analysis of mitochondrial control region sequence from three flatfish species (pleuronectidae)

  • Research Papers
  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The 5′-end of the mitochondrial control region sequences of three flatfishes (Pleuronectiformes: Pleuronectidae) were amplified and sequenced. These sequences were compared with those of other three Pleuronectids species retrieved from GenBank. A phylogenetic tree was constructed based on the partial control region sequences. The results of phylogenetic analysis are consistent with those of conventional systematics. Compared to previous studies, the structure of the 5′-end of mitochondrial control region was analyzed. The terminal associated sequence motif and its complementary motif were identified at the 5′-end of the sequences. A conserved sequence block, named as CM5’d, was identified in the 5′-end of control region sequences in all Pleuronectids. Another central conserved sequence block, named as CSB-F, was detected in the central conserved blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aquadro, C.F., and B.D. Greenberg, 1983. Human mitochondrial DNA variation and evolution: Analysis of nucleotide sequences from seven individuals. Genetics, 103: 287–312.

    Google Scholar 

  • Brown, W. M., M. George Jr., and A. C. Wilson, 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci., 76: 1967–1974.

    Article  Google Scholar 

  • Chapleau, F., 1993. Pleuronectiform relationships: a cladistic reassessment. Bull. Mar. Sci., 52: 516–540.

    Google Scholar 

  • Cooper, J.A., and F. Chapleau, 1998. Monophyly and intrarelationships of the family Pleuronectidae (Pleuronectiformes), with a revised classification. Fish. Bull., 96(4): 686–726.

    Google Scholar 

  • Guo, X. H., S.J. Liu, and Y. Liu, 2003. Comparative analysis of the mitochondria DNA control region in cyprinids with different ploidy level. Aquaculture, 224: 25–38.

    Article  Google Scholar 

  • Harrison, R. G., 1989. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol. Evol., 4: 6–11.

    Article  Google Scholar 

  • Hoelzel, A. R., J. M. Hancock, and G.A. Dover., 1991. Evolution of the cetacean mitochondrial D-loop region. Mol. Biol. Evol., 8: 475–493.

    Google Scholar 

  • Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S. Paabo, et al., 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci., 86: 6196–6200.

    Article  Google Scholar 

  • Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei, 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17(12): 1244–1245.

    Article  Google Scholar 

  • Lee, W.J., J. Conroy, W.H. Howell, and T.D. Kocher, 1995. Structure and evolution of teleost mitochondrial control regions. J. Mol. Evol., 41(1): 54–66.

    Article  Google Scholar 

  • Lessinger, A.C., and A.M.L. Azeredo-Espin, 2000. Evolution and structural organisation of mitochondrial DNA control region of myiasis-causing files. Med. Veter. Entomol., 14: 71–80.

    Article  Google Scholar 

  • Li, S. Z., and H. M. Wang, 1995. Fauna SINICA, Ostichthyes, Pleuronectiformes. Science Press, Bejing, 433 pp.

    Google Scholar 

  • Lopez, J.V., M. Culver, J.C. Stephens, W. E. Johnson, and S.J. O’Brien, 1997. Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Mol. Biol. Evol., 14: 277–286.

    Google Scholar 

  • Meyer, A., T.D. Kocher, P. Basasibwaki, and A.C. Wilson, 1990. Monophyletic origin of Lake Victoria cichlid fishes, suggested by mitochondrial DNA sequence. Nature, 347(11): 550–553.

    Article  Google Scholar 

  • Murgra, B., G. Tola, S. N. Archer, S. Vallerga, and J. Hirano, 2002. Genetic identification of grey mullet species (Mugilidae) by analysis of mitochondrial DNA sequence: Application to identify the origin of processed ovary products (Bottarga). Mar. Biotechnol., 4: 119–126.

    Article  Google Scholar 

  • Nelson, J.S., 1994. Fishes of the World. 3rd edition. J.S. Nelson, ed., John Wiley and Sons, New York, 624 pp.

    Google Scholar 

  • Nesbø, C.L., M.O. Arab, and K.S. Jakobsen, 1998. Heteroplasmy, length and sequence variation in the mtDNA control regions of tree percid fish species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca). Genetics, 148: 1907–1919.

    Google Scholar 

  • Noell, C. J., S. Donnellar, R. Foster, and L. Haigh, 2001. Molecular discrimination of Garfish Hyporhamphus (Beloniformes) larvae, in Southern Astralian waters. Mar Biotech. 3: 509–514.

    Article  Google Scholar 

  • Randi, E., and V. Lucchini, 1998. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol., 47: 149–157.

    Google Scholar 

  • Ravage R. G., V. D. Monie, and M. A. Juinio-Menez, 2002. Length and sequence variability in mitochondrial control region of milkfish (Chanos chanos). Mar. Biotechnol., 4: 40–50.

    Article  Google Scholar 

  • Rocha-Olivares, A., R. H. Rosenblatt, and R. D. Vetter, 1999. Molecular evolution, systemmatics, and zoogeography of the Rockfish subgenus Sebastomus (Sbastes Scorpaenidae) based on Mitochondrial cytochromeb and control region sequences. Mol. Phylogenet. Evol., 11(3): 441–4458.

    Article  Google Scholar 

  • Rose, C, and J. O. Reiss, 1993. Meramorphosis and the Vertebrate Skull: Ontogenetic Parterns and Developmental Skull, Vol.1. University of Chicago Press, Chicago and London, 1: 1289–1346.

    Google Scholar 

  • Ruokonen, M., and L. Kvist, 2002. Structure and evolution of the avian mitochondrial control region. Mol. Phylogenet. Evol., 23: 422–432.

    Article  Google Scholar 

  • Sambrook, J., E. F. Fritsch, and T. Manaiatis, 1989. Molecular Cloning. 2nd edition. Cold Spring Harbor Laboratory Press, New York, 1659 pp.

    Google Scholar 

  • Saunders, M.A., and V.J. Edwards, 2000. Dynamics and phylogenetic implications of mtDNA control region sequences in new world jays (Aves: Corvidae). J. Mol. Evol., 51: 97–109.

    Google Scholar 

  • Sbisa, E., F. Tanzariello, F. Reyes, G. Pesole, and C. Saccone, 1997. Mammlian mitochondrial D-loop region structural analysis: identification of new conserved sequences and the functional and evolutionary implications. Gene, 205: 125–140.

    Article  Google Scholar 

  • Southern, S. O., P.J. Southern, and A. E. Dizon, 1988. Molecular characterization of a cloned dolphin mitochondrial genome. J. Mol. Evol, 28: 32–40.

    Article  Google Scholar 

  • Tamura, K., and M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzes. Mol. Biol. Evol., 10: 512–526.

    Google Scholar 

  • Tinti, F., A. Colombari, M. Vallisneri, C. Piccinetti, and A.M. Stagni, 1999. Comparative analysis of a mitochondrial DNA control region fragment amplified from three Adriatic flatfish species and molecular phylogenesis of Pleuronectiformes. Mar. Biotechnol., 1: 20–24.

    Article  Google Scholar 

  • Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins, 1997. The Clustal X windows interface; Flexibale strategies for multiple sequences alignment aided by quality analysis tools. Nucleic. Acids. Res., 25(24): 4876.

    Article  Google Scholar 

  • Zardoya, R., and A. Meyer, 1996. The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolli) supports its phylogenetic position as a close relative of land vertebrates. Genetics, 142: 1249–1263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Kong, X., Yu, Z. et al. Comparative analysis of mitochondrial control region sequence from three flatfish species (pleuronectidae). J Ocean Univ. China 4, 80–84 (2005). https://doi.org/10.1007/s11802-005-0028-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-005-0028-0

Key words

Navigation