Journal of Ocean University of China

, Volume 3, Issue 2, pp 191–194 | Cite as

Seafloor asymmetry in the Atlantic Ocean

  • S. S. GaoEmail author
  • K. H. Liu
Research Papers


Measurements of seafloor asymmetry at about 360000 pairs of conjugate points along 1250 profiles across the mid-Atlantic Ridge (MAR) provide new constraints on models for the upwelling of the buoyant asthenosphere. The sign and amplitude of the asymmetry vary systematically and are functions of the distance between the spreading center and the location of the inferred location of maximum regional buoyancy (LMRB) in the asthenosphere. The LMRB is a smooth line derived from the observed asymmetry and is more centered at the regional topographic high than the spreading center. These observations are best explained by active upwelling of the underlying buoyant asthenosphere rather than by pressure-release melting.

Key words

seafloor topography seafloor asymmetry mid-ocean ridges Atlantic Ocean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Calcagno, P., and A. Cazenave, 1994. Subsidence of the seafloor in the Atlantic and Pacific Oceans: regional and large-scale variations. Earth Planet. Sci. Lett., 126: 473–492.CrossRefGoogle Scholar
  2. Calmant, S. C., M. Berge-Nguyen, and A. Cazenave, 2002. Global seafloor topography from a least-squares inversion of altimetry-based high-resolution mean sea surface and shipboard soundings. Geophys. J. Int., 151: 795–808.CrossRefGoogle Scholar
  3. Cochran, J. R., 1986. Variations in subsidence rates along intermediate and fast spreading mid-ocean ridges. Geophys. J. R. Astron. Soc, 87: 421–454.Google Scholar
  4. Conder, J. A., D. W. Forsyth, and E. M. Parmentier, 2002. Asthenospheric flow and asymmetry of the East Pacific Rise, MELT area. J. Geophys. Res., 107 (B12): 2344, doi: 10.1029/2001JB000807.CrossRefGoogle Scholar
  5. DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, 1990. Current plate motions. Geophys. J. Int., 101: 425–478.CrossRefGoogle Scholar
  6. Doglioni, C., E. Carminati, and E. Bonatti, 2003. Rift asymmetry and continental uplift. Tectonics, 22 (3): 1024, doi: 10.1029/2002TC001459.CrossRefGoogle Scholar
  7. Eberle, M. A., and D. W. Forsyth, 1998. Evidence from the asymmetry of fast-spreading ridges that the axial topographic high is due to extensional stresses. Nature, 394: 360–363.CrossRefGoogle Scholar
  8. Forsyth, D.W., S.C. Webb, L.M. Dorman, and Y. Shen, 1998. Phase velocities of Rayleigh waves in the MELT experiment on the East Pacific Rise. Science, 280: 1235–1238.CrossRefGoogle Scholar
  9. Gao, S. S., P.M. Davis, K. H. Liu, P. D. Slack, Y. A. Zorin, et al, 1994. Seismic anisotropy and mantle flow beneath the Baikal rift zone. Nature, 371: 149–151.CrossRefGoogle Scholar
  10. Grand, S. P., van der R. D. Hilst, and S. Widiyantoro, 1997. Global seismic topography: a snapshot of convection in the Earth. GSA Today, 7: 1–7.Google Scholar
  11. Hess, H.H., 1962. History of ocean basins. In: Petrologic Studies: A Volume to Honor A. F. Buddington. A. E. J. Engel, et al., eds., Geological Society of America, New York, 599–620.Google Scholar
  12. Holmes, A., 1931. Radioactivity and earth movements. Trans. Geol. Soc, Glasgow, 18: 559–606.Google Scholar
  13. Kane, K.A., and D.E. Hayes, 1992. Tectonic corridors in the South Atlantic: Evidence for long-lived mid-ocean ridge segmentation. J. Geophys. Res., 97: 17317–17330.Google Scholar
  14. King, S.D., and J. Ritsema, 2000. African hotspot volcanism: small-scale convection in the upper mantle beneath cratons. Science, 290: 1137–1140.CrossRefGoogle Scholar
  15. Marty, J.C., and A. Cazenave, 1989. Regional variations in subsidence rate of oceanic plates; a global analysis. Earth Planet. Sci. Lett., 94: 301–315.CrossRefGoogle Scholar
  16. Muller, R.D., W.R. Roest, J-Y. Royer, L.M. Gahagan, and J.G. Sclater, 1997. Digital isochrones of the world’s ocean floor. J. Geophys., Res., 102(B2): 3211–3214.CrossRefGoogle Scholar
  17. Oxburgh, E. R., and E. M. Parmentier, 1977. Compositional and density stratification in oceanic lithosphere: Causes and consequences. J. Geol. Soc. London, 133: 343–355.Google Scholar
  18. Parsons, B., and J. G. Sclater, 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82(B5): 803–827.Google Scholar
  19. Phipps Morgan, J., and W. H. F. Smith, 1992. Flattening of the seafloor depth-age curve as a response to asthenospheric flow. Nature, 359: 524–527.CrossRefGoogle Scholar
  20. Silver, P.G., and W.E. Holt, 2002. The mantle flow field beneath western North America. Science, 295: 1054–1057.CrossRefGoogle Scholar
  21. Smith, W. H. F., and D. T. Sandwell, 1997. Global sea-floor topography from satellite altimetry and ship depth soundings. Science, 277: 1957–1962.Google Scholar
  22. Turcotte, D.L., and G. Schubert, 2002. Geodynamics. 2nd edition. Cambridge Univ. Press, Cambridge, 456pp.Google Scholar
  23. Wessel, P., and W.H.F. Smith, 1995. New version of the Generic mapping Tools released. Eos Trans AGU, 76: 329.CrossRefGoogle Scholar

Copyright information

© Ocean University of China (OUC) 2004

Authors and Affiliations

  1. 1.Department of GeologyKansas State UniversityManhattanUSA

Personalised recommendations