Skip to main content
Log in

Implementation of all-optical tristate Pauli X, Y and Z gates based on two-dimensional photonic crystal

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

In this paper, we have designed and simulated all-optical tristate Pauli X, Y and Z gates using 2D photonic crystal. Simple line and point defects have been used to design the structure. The performance of the structure has been analyzed and investigated by plane wave expansion (PWE) and finite difference time domain (FDTD) methods. Different performance parameters, namely contrast ratio (CR), rise time, fall time, delay time, response time and bit rate, have been calculated. The main advantage of the proposed design is that all the Pauli gates have been realized from a single structure. Due to compact size, fast response time, good CR and high bit rate, the proposed structure can be highly useful for optical computing, data processing and optical integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BANSAL D, LOVKESH. 7 Gbit/s optical JK flip flop design with two optical AND gates and NOR gates[J]. Optoelectronics letters, 2022, 18: 408–414.

    Article  ADS  Google Scholar 

  2. HAZRA S, MUKHOPADHYAY S. Implementation of quantum optical tristate CNOT gate using frequency encoding principle with a semiconductor optical amplifier[J]. Optoelectronics letters, 2023, 19: 269–273.

    Article  ADS  Google Scholar 

  3. MANDAL M, GOSWAMI I, MUKHOPADHYAY S. Implementation of programmable photonic one qubit quantum gates using intensity and phase encoding jointly[J]. Journal of optics, 2023, 52: 145–153.

    Article  Google Scholar 

  4. ALQULIAH A, KOTB A, SINGH S C, et al. All-optical AND, NOR, and XNOR logic gates using semiconductor optical amplifiers-based Mach-Zehnder interferometer followed by a delayed interferometer[J]. Optik, 2021, 225: 165901.

    Article  ADS  Google Scholar 

  5. BUTT M A, KHONINA S N, KAZANSKIY N L. Recent advances in photonic crystal optical devices: a review[J]. Optics and laser technology, 2021, 142: 107265.

    Article  Google Scholar 

  6. CABALLERO L P, POVINELLI M L, RAMIREZ J C, et al. Photonic crystal integrated logic gates and circuits[J]. Optics express, 2022, 30(2): 1976–1993.

    Article  ADS  Google Scholar 

  7. CABALLERO L E P, NETO O P V. A review on photonic crystal logic gates[J]. Journal of integrated circuits and systems, 2021, 16(1): 1–13.

    Article  Google Scholar 

  8. JINDAL P, HOURAN M A, GOYAL D, et al. A review of different techniques used to design photonic crystal-based logic gates[J]. Optik, 2023, 280: 170794.

    Article  ADS  Google Scholar 

  9. PARANDIN F, SHEYKHIAN A, BAGHERI N. A novel design for an ultracompact optical majority gate based on a ring resonator on photonic crystal substrate[J]. Journal of computational electronics, 2023, 22: 716–722.

    Article  Google Scholar 

  10. HAZRA S, MUKHOPADHYAY S. Two-dimensional photonic crystal based optical CNOT gate[J]. Optical and quantum electronics, 2023, 55: 961.

    Article  Google Scholar 

  11. MOHEBZADEH-BAHABADY A, OLYAEE S. Investigation of response time of small footprint photonic crystal AND logic gate[J]. Optoelectronics letters, 2020, 16: 477–480.

    Article  ADS  Google Scholar 

  12. HUANG Y, SHI M, YU A, et al. Design of multifunctional all-optical logic gates based on photonic crystal waveguides[J]. Applied optics, 2023, 62(3): 774–781.

    Article  ADS  Google Scholar 

  13. ELHACHEMI K, VIGNESWARAN D, RAFAH N, et al. All optical logic gates function by ring resonator properties aiding photonic crystal[J]. Physics scripta, 2022, 97(10): 105502.

    Article  ADS  Google Scholar 

  14. XUE Y, HU Y, MENG D. Design and research of logic gate based on photonic crystal self-collimation effect[C]//2022 International Conference on High Performance Computing and Communication (HPCCE 2021), February 18, 2022, Guangzhou, China. Washington: SPIE, 2021: 12162.

    Google Scholar 

  15. SOMA S, GOWRE S K C, SONTH M V, et al. Design and simulation of reconfigurable optical logic gates for integrated optical circuits[J]. Optical and quantum electronics, 2023, 55: 340.

    Article  Google Scholar 

  16. DE P, RANWA S, MUKHOPADHYAY S. Implementation of all-optical Toffoli gate by 2D Si-air photonic crystal[J]. IET optoelectronics, 2021, 15(3): 139–148.

    Article  Google Scholar 

  17. DE P, RANWA S, MUKHOPADHYAY S. Alternative scheme for implementation of 3 qubit Fredkin gate with photonic bandgap crystal[J]. Optics and laser technology, 2023, 167: 109804.

    Article  Google Scholar 

  18. HASSANGHOLIZADEH-KASHTIBAN M, ALIPOUR-BANAEI H, TAVAKOLI M B, et al. Creation of a fast optical Toffoli gate based on photonic crystal nonlinear ring resonators[J]. Journal of computational electronics, 2020, 19: 1281–1287.

    Article  Google Scholar 

  19. TALEBZADEH R, BEIRANVAND R, MOAYED S H. Design and simulation of an all-optical Fredkin gate based on silicon slab-waveguide in a 2-D photonic crystal[J]. Optical and quantum electronics, 2023, 55: 241.

    Article  Google Scholar 

  20. VEISI E, KESHVARI M S, SEIFOURI M, et al. Realization of an all-optical ultra-fast and compact reversible Feynman logic gate[J]. Journal of Russian laser research, 2023, 44: 235–245.

    Article  Google Scholar 

  21. LAKSHAN S, DEY A, MUKHOPADHYAY S. Alternative approach of frequency encoding for implementation of tristate Pauli Z gate with PC-SOA assisted photonic band gap crystal[J]. Optical and quantum electronics, 2023, 55: 613.

    Article  Google Scholar 

  22. SARFARAJ M N, MUKHOPADHYAY S. All-optical scheme for implementation of tri-state Pauli-X, Y and Z quantum gates using phase encoding[J]. Optoelectronics letters, 2021, 17: 746–750.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology (Govt. of India) for providing INSPIRE fellowship to Snigdha Hazra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdha Hazra.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, S., Mukhopadhyay, S. Implementation of all-optical tristate Pauli X, Y and Z gates based on two-dimensional photonic crystal. Optoelectron. Lett. 20, 346–352 (2024). https://doi.org/10.1007/s11801-024-3157-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-024-3157-7

Document code

Navigation