Skip to main content
Log in

A high-performance multi-wavelength optical switch based on multiple Fano resonances in an all-dielectric metastructure

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

The multi-wavelength optical switch based on an all-dielectric metastructure consisting of four asymmetric semi-circular rings was designed and analyzed in this paper. Four Fano resonance modes, which can be explained by bound states in the continuum (BIC) theory, are excited in our structure with a maximum Q-factor of about 2 450 and a modulation depth close to 100%. By changing the polarization direction of the incident light, the transmission amplitude of Fano resonances can get effectively modulated. Based on this tuning property, the metastructure can achieve a multi-wavelength optical switch in the near-infrared region (900–980 nm) and the maximum extinction ratio can reach 38.3 dB. In addition, the results indicate that the Fano resonances are sensitive to the changes in the refractive index. The sensitivity (S) and the figure of merit (FOM) are 197 nm/RIU and 492 RIU−1. The proposed metastructure has promising potential in applications such as optical switches, sensors, modulators and lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN Y K, WANG Y. Electrically tunable toroidal Fano resonances of symmetry-breaking dielectric metasurfaces using graphene in the infrared region[J]. Journal of optics, 2022, 24(4): 044012.

    Article  ADS  Google Scholar 

  2. JIANG H, HAN Z H. Spectral stability of bound state in the continuum resonances due to thermal effect and the application as efficient thermo-optic modulators[J]. Optics communications, 2022, 515: 128216.

    Article  MathSciNet  CAS  Google Scholar 

  3. HAN Z H, CAI Y J. All-optical self-switching with ultralow incident laser intensity assisted by a bound state in the continuum[J]. Optics letters, 2021, 46(3): 524–527.

    Article  ADS  PubMed  Google Scholar 

  4. XING J J, LI H, YU S L, et al. Multiple Fano resonances driven by bound states in the continuum in an all-dielectric nanoarrays system[J]. AIP advances, 2023, 13(3): 035212.

    Article  ADS  Google Scholar 

  5. YE Y C, YU S L, LI H, et al. Triple Fano resonances metasurface and its extension for multi-channel ultra-narrow band absorber[J]. Results in physics, 2022, 42: 106025.

    Article  Google Scholar 

  6. ZHANG Y B, LIU W W, LI Z C, et al. High-quality-factor multiple Fano resonances for refractive index sensing[J]. Optics letters, 2018, 43(8): 1842–1845.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. FAN K, SHADRIVOV I V, PADILLA W J. Dynamic bound states in the continuum[J]. Optica, 2019, 6(2): 169–173.

    Article  ADS  CAS  Google Scholar 

  8. GARMON S, NOBA K, ORDONEZ G, et al. Non-Markovian dynamics revealed at a bound state in the continuum[J]. Physical review A, 2019, 99(1): 010102.

    Article  ADS  CAS  Google Scholar 

  9. ZHAO H N, FAN X Y, WEI X, et al. All-dielectric metastructure based on multiple Fano resonances with high sensitivity[J]. Optics communications, 2023, 530: 129193.

    Article  CAS  Google Scholar 

  10. YU S L, LI H, WANG Y S, et al. Multiple Fano resonance excitation of all-dielectric nanoholes cuboid arrays in near infrared region[J]. Results in physics, 2021, 28: 104569.

    Article  Google Scholar 

  11. YANG L, YU S L, LI H, et al. Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces[J]. Optics express, 2021, 29(10): 14905–14916.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. BI L P, FAN X Y, LI C C, et al. Multiple Fano resonances on the metastructure of all-dielectric nanopore arrays excited by breaking two-different-dimensional symmetries[J]. Heliyon, 2023, 9(1): e12990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. WANG D D, FAN X Y, FANG W J, et al. Excitation of multiple Fano resonances on all-dielectric nanoparticle arrays[J]. Optics express, 2023, 31(6): 10805–10819.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. SHI Y, YU S L, LI H, et al. Ultra-high quality factor resonances in a pinwheel-shaped all-dielectric metasurface based on bound states in the continuum[J]. IEEE photonics journal, 2023, 15(2): 1–7.

    Article  ADS  Google Scholar 

  15. FAN H J, LI J, SUN Y H, et al. Asymmetric cross metasurfaces with multiple resonances governed by bound states in the continuum[J]. Materials, 2023, 16(6): 2227.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. LI H, YU S L, YANG L, et al. High Q-factor multi-Fano resonances in all-dielectric double square hollow metamaterials[J]. Optics and laser technology, 2021, 140: 107072.

    Article  CAS  Google Scholar 

  17. WANG Y S, HU Z H, ZHAO T G, et al. High Q-factor Fano resonances on permittivity-asymmetric dielectric meta-surfaces[C]//Proceedings of Nanophotonics and Micro/Nano Optics VII, October 10–12, 2021, Nantong, China. New York: SPIE, 2021, 11903: 139–145.

    Google Scholar 

  18. JIANG X Q, BAO J L, SUN X D. Multiwavelength optical switch based on controlling the Fermi energy of graphene[J]. Physical review applied, 2018, 9(4): 044026.

    Article  ADS  CAS  Google Scholar 

  19. PALIK E D. Handbook of optical constants of solids[M]. New York: Academic Press, 1985: 547–569.

    Google Scholar 

  20. WANG W D, ZHENG L, LIU Y J, et al. High-quality-factor multiple Fano resonances in free-standing all-dielectric nanodisk dimers for applications[J]. Optik, 2020, 207: 163815.

    Article  ADS  CAS  Google Scholar 

  21. XU L, ZANGENEH K K, HUANG L J, et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators[J]. Advanced science, 2019, 6(15): 1802119.

    Article  PubMed  PubMed Central  Google Scholar 

  22. LI J, MA T. Magnetic toroidal dipole resonances with high quality factor in all-dielectric metamaterial[J]. Optics communications, 2022, 507: 127621.

    Article  CAS  Google Scholar 

  23. NIU Q L, ZHU Y Q. Research on control of optical switch based on tetramer structure[J]. Transducer and microsystem technologies, 2023, 42(3): 40–44.

    Google Scholar 

  24. ZHANG L, DONG Z G, WANG Y M, et al. Dynamically configurable hybridization of plasmon modes in nanoring dimer arrays[J]. Nanoscale, 2015, 7(28): 12018–12022.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. HE J N, WANG J Q, DING P, et al. Optical switching based on polarization tunable plasmon-induced transparency in disk/rod hybrid metasurfaces[J]. Plasmonics, 2015, 10: 1115–1121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinye Fan or Cunzhu Tong.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

This work has been supported by the Cultivation Plan for Young Scholars in Universities of Shandong Province (No.2021RC085), the Natural Foundation of Shandong Province (Nos.ZR2021MF053, ZR2022MF253, ZR2021MF070 and ZR2022MF305), and the Open Fund of the Key State Laboratory (BUPT, IPOC) (No.IPOC2021B07).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Fan, X., Fang, W. et al. A high-performance multi-wavelength optical switch based on multiple Fano resonances in an all-dielectric metastructure. Optoelectron. Lett. 20, 193–199 (2024). https://doi.org/10.1007/s11801-024-3147-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-024-3147-9

Document code

Navigation