Skip to main content
Log in

A nano-plasmonic HMIM waveguide based concurrent dual-band BPF using circular ring resonator

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

This article analyzes the transmission line characteristics of plasmonic hybrid metal insulator metal (HMIM) waveguide, circular ring resonator (CRR) based dual-band band-pass filters with two transmission poles in both pass-bands in the optical regime using coupled line feed. The transmission line characteristics of an HMIM waveguide, such as characteristic impedance (ZPV), effective refractive index (neff) and propagation length (Lspp), have been obtained by using full wave simulation. Using basic HMIM slot waveguide, a CRR with periodic loading of double- and triple-ring CRR is numerically analyzed. Two input ports have been used for excitation, which are located at the separation of 180° positions along the CRR, and are coupled with the ring by parallel coupled lines, producing the dual pass-bands with the synchronous excitation of two transmission poles. The proposed double-ring dual-band band-pass filter (DR-DB-BPF) offers 35 dB extinction ratio (ER), 299.69 nm free spectral range (FSR) and narrow band full width half maximum (FWHM) of 78.057–112.43 nm. The triple-ring DB-BPF (TR-DB-BPF) has 22.5 dB ER, FSR of 292.18 nm and FWHM of 42.751–59.58 nm. The proposed filters are very useful in the development of dual-band filters for electronic photonic integrated circuits (EPICs), as the optical signals are filtered at two wavelengths simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHU J, ZHU T, JIA H, et al. Intuitive analysis of sub-wavelength plasmonic waveguide[J]. Journal of lightwave technology, 2019, 37(4): 1345–1351.

    Article  ADS  Google Scholar 

  2. ZHANG Z. Silicon-based photonic devices: design, fabrication and characterization[J]. Atom & molecular physics & optics, 2008.

  3. DU W, WANG T, CHU H S, et al. On-chip molecular electronics plasmon sources based on self-assembled monolayer tunnel junctions[J]. Nature photonics, 2016, 10: 274–280.

    Article  ADS  Google Scholar 

  4. LIU Y, ZHANG J, LIU H, et al. Electrically driven monolithic subwavelength plasmonic interconnect circuits[J]. Science advances, 2017, 3(10): 1–8.

    Article  Google Scholar 

  5. PATEL V, SHARMA P, KUMAR V D. Efficient coupling from dielectric to hybrid plasmonic waveguide using curved taper[J]. IEEE photonics technology letters, 2019, 31(4): 323–326.

    Article  ADS  Google Scholar 

  6. LIU Y, ZHANG J, PENG L M. Three-dimensional integration of plasmonics and nanoelectronics[J]. Nature electronics, 2018, 1(12): 644–651.

    Article  Google Scholar 

  7. SHARMA P, DINESH K V. Hybrid metal insulator metal plasmonic waveguide and ring resonator[C]//Proceedings of 2016 OptoElectronics and Communications Conference, July 3–7, 2016, Niigata, Japan. New York: IEEE, 2016: 1–3.

    Google Scholar 

  8. KRITARTH S, DINESH K V. Investigation of light coupling between HMIM and HIMI plasmonic waveguides[J]. Optical and quantum electronics, 2021, 53: 225.

    Article  Google Scholar 

  9. TIAN J, YANG R, SONG L, et al. Optical properties of a Y-splitter based on hybrid multilayer plasmonic waveguide[J]. IEEE journal of quantum electronics, 2014, 50(11): 898–903.

    Article  ADS  Google Scholar 

  10. DU C H, CHIOU Y P. Vertical directional couplers with ultra-short coupling length based on hybrid plasmonic waveguides[J]. Journal of lightwave technology, 2014, 32(11): 2065–2071.

    Article  ADS  Google Scholar 

  11. SHARMA P, KUMAR V D. Investigation of multilayer planar hybrid plasmonic waveguide and bends[J]. Electronics letters, 2016, 52(9): 732–734.

    Article  ADS  Google Scholar 

  12. SHARMA P, KUMAR V D. All optical logic gates using hybrid metal insulator metal plasmonic waveguide[J]. IEEE photonics technology letters, 2018, 30(10): 959–962.

    Article  ADS  Google Scholar 

  13. SEHAM A E, NIHAL F F A, HAMDI A E M, et al. Tunable multi-channels bandpass InGaAsP plasmonic filter using coupled arrow shape cavities[J]. Photonics, 2022, 9(10): 1–11.

    Google Scholar 

  14. CASPERS J N, MOJAHEDI M. Measurement of a compact colorless 3 dB hybrid plasmonic directional coupler[J]. Optics letters, 2014, 39(11): 3262–3265.

    Article  ADS  Google Scholar 

  15. MOHAMMAD S, ALI P, REZA G B. Hybrid MIM plasmonic waveguide by triangular grooves[J]. Optik, 2023, 273: 170441.

    Article  Google Scholar 

  16. KUMAR B S, SRIDHAR M. Design and analysis of HMIM waveguide based dual band BPF for nanoscale applications[J]. Design engineering, 2021: 1025–1032.

  17. WOLFF I, KNOPPIK N. Microstrip ring resonator and dispersion measurement on microstrip lines[J]. Electronics letters, 1971, 7(26): 779–781.

    Article  ADS  Google Scholar 

  18. PINTU K, DHARMENDRA K S, RAKESH R. Optical performance of hybrid dielectric loaded plasmonic waveguide using PTFE for nano-scale light confinement[J]. Optoelectronics letters, 2020, 16(7): 284–289.

    Google Scholar 

  19. MAIER S A. Plasmonics: fundamentals and applications[M]. 1st ed. Berlin, Heidelberg: Springer, 2007.

    Book  Google Scholar 

  20. SHIVA K, MOHAMMAD D, PEJMAN R. Design of single mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides[J]. Plasmonics, 2019, 14: 6850.

    Google Scholar 

  21. KHATAB H M, AREED N F F, EL-MIKATI H A, et al. Efficient plasmonic line-up filter for sensing applications[J]. Optical quantum electronics, 2021, 54: 47.

    Article  Google Scholar 

  22. SURENDRA K B, SRIDHAR M, SANTHOSH C H, et al. Terahertz analysis of a highly sensitive MIM-SRR_TiO2 nanostructure for bio-sensor applications with the FDTD method[J]. Journal of optical society America B, 2022, 39(1): 223–229.

    Article  ADS  Google Scholar 

  23. THIRUPATHAIAH K, RAO L K, RAVI B. Nanoplasmonic directional coupler using asymmetric parallel coupled MIM waveguides[J]. IEEE photonics technology letters, 2022, 34(8): 401–404.

    Article  ADS  Google Scholar 

  24. YU Y, LIU B, YANG F, et al. Design and fabrication of room temperature electrically pumped ZnO nanowire hybrid plasmonic lasers[J]. IEEE photonics technology letters, 2023, 35(16): 899–902.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriyala Sridhar.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridhar, M., Bitra, S.K., Murthy, T.S.N. et al. A nano-plasmonic HMIM waveguide based concurrent dual-band BPF using circular ring resonator. Optoelectron. Lett. 20, 152–156 (2024). https://doi.org/10.1007/s11801-024-3130-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-024-3130-5

Document code

Navigation