Skip to main content

Advertisement

Log in

Antibody-modified integrated microfluidic terahertz biosensor for detection of breast cancer biomarkers

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Breast cancer is the most common malignant tumor in women, which seriously threatens the physical and mental health of women worldwide. The existing detection methods have problems, such as large sample consumption, time-consuming sample preparation, expensive equipment, and low sensitivity. In order to solve these problems, this paper proposes a method for quickly detecting breast cancer using surface-functionalized terahertz metamaterial biosensors. The use of PIK3CA-modified sensors enhances the detection sensitivity and specificity of exosomes. Based on the red shift of the sensor absorption peak caused by exosomes, breast cancer patients can be distinguished from healthy controls. This study demonstrates that exosome detection is effective for the repeatable and non-invasive diagnosis of breast cancer patients. The terahertz metamaterial biosensor designed in this paper has high specificity, repeatability, and sensitivity, and has great potential for application in the development of modern diagnostic instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DOYLE L M, WANG M Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): 727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. IANG K, LIU F, FAN J, et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring[J]. Nature biomedical engineering, 2017, 1(4): 0021.

    Article  Google Scholar 

  3. CHEN I, XUE L, HSU C, et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer[J]. Proceedings of the national academy of sciences, 2017, 114(12): 3175–3180.

    Article  CAS  ADS  Google Scholar 

  4. KOWAL J, ARRAS G, COLOMBO M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle sub-types[J]. Proceedings of the national academy of sciences of the United States of America, 2016, 113(8): E968–E977.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. WANG L, DENG Y, HUANG Y, et al. Template-free multiple signal amplification for highly sensitive detection of cancer cell-derived exosomes[J]. Chemical communications, 2021, 57(68): 8508–8511.

    Article  CAS  PubMed  Google Scholar 

  6. SUN Z, WANG L, WU S, et al. An electrochemical biosensor designed by using Zr-based metal organic frameworks for the detection of glioblastoma-derived exosomes with practical application[J]. Analytical chemistry, 2020, 92(5): 3819–3826.

    Article  CAS  PubMed  Google Scholar 

  7. WANG L, PAN Y, LIU Y, et al. Fabrication of an aptamer-coated liposome complex for the detection and profiling of exosomes based on terminal deoxynucleotidyl transferase-mediated signal amplification[J]. ACS applied materials and interfaces, 2020, 12(1): 322–329.

    Article  CAS  PubMed  Google Scholar 

  8. PAN Y, WANG L, DENG Y, et al. A simple and sensitive method for exosome detection based on steric hindrance-controlled signal amplification[J]. Chemical communications, 2020, 56(89): 13768–13771.

    Article  CAS  PubMed  Google Scholar 

  9. WANG L, YANG Y, LIU Y, et al. Bridging exosome and liposome through zirconium-phosphate coordination chemistry: a new method for exosome detection[J]. Chemical communications, 2019, 55(18): 2708–2711.

    Article  CAS  PubMed  Google Scholar 

  10. WANG L, DENG Y, WEI J, et al. Spherical nucleic acids-based cascade signal amplification for highly sensitive detection of exosomes[J]. Biosensors and bioelectronics, 2021, 191: 113465.

    Article  CAS  PubMed  Google Scholar 

  11. WANG M H, PAN Y H, WU S, et al. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks[J]. Biosensors and bioelectronics, 2020, 169: 112638.

    Article  CAS  PubMed  Google Scholar 

  12. SHANG A, GU C, ZHOU C, et al. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression[J]. Cell communication and signaling, 2020, 18(1): 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. ROOCK W D, VRIENDT V D, NORMANNO N, et al. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer[J]. Lancet oncology, 2011, 12(6): 594–603.

    Article  PubMed  Google Scholar 

  14. ZHOU C, SUN H, ZHENG C, et al. Oncogenic HSP60 regulates mitochondrial oxidative phosphorylation to support Erk1/2 activation during pancreatic cancer cell growth[J]. Cell death and disease, 2018, 9(2): 161.

    Article  PubMed  PubMed Central  Google Scholar 

  15. CAMPANELLA C, RAPPA F, SCIUMÈ C, et al. Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery[J]. Cancer, 2015, 121(18): 3230–3239.

    Article  CAS  PubMed  Google Scholar 

  16. YAN X, YANG M S, ZHANG Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and bioelectronics, 2018, 126: 485–492.

    Article  PubMed  Google Scholar 

  17. ZHAO R, ZOU B, ZHANG G L, et al. High-sensitivity identification of aflatoxin B1 and B2 using terahertz time-domain spectroscopy and metamaterial-based terahertz biosensor[J]. Journal of physics D: applied physics, 2020, 53(19): 195401.

    Article  CAS  ADS  Google Scholar 

  18. LI B, ZHAO X, ZHANG Y, et al. Prediction and monitoring of leaf water content in soybean plants using terahertz time-domain spectroscopy[J]. Computers and electronics in agriculture, 2020, 170(2): 105239.

    Article  Google Scholar 

  19. ZHU Z, CHENG C, CHANG C, et al. Characteristic fingerprint spectrum of neurotransmitter norepinephrine with broadband terahertz time-domain spectroscopy[J]. Analyst, 2019, 144(8): 2504–2510.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. CHEN K, XU D G, LI J N, et al. Application of terahertz time-domain spectroscopy in atmospheric pressure plasma jet diagnosis[J]. Results in physics, 2020, 16: 102928.

    Article  Google Scholar 

  21. CHEN H, CHEN T H, TSENG T F, et al. High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model[J]. Optics express, 2011, 19(22): 21552–21562.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. LIU Y, LIU H, TONG M Q, et al. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges[J]. RSC advances, 2019, 9(17): 9354–9363.

    Article  ADS  Google Scholar 

  23. HIDAYAT M V, APRIONO C. Simulation of terahertz imaging using microstrip linear array antenna for breast cancer detection[J]. AIP conference proceedings, 2019, 2092: 020020.

    Article  Google Scholar 

  24. YUMA T, KOUJI N, HIROAKI M. Security screening system based on terahertz-wave spectroscopic gas detection[J]. Optics express, 2020, 29(2): 2529–2537.

    Google Scholar 

  25. CONG L, TAN S, YAHIAOUI R, et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces[J]. Applied physics letters, 2015, 106(3): 26.

    Article  Google Scholar 

  26. ZHANG C H, LIANG L J, DING L, et al. Label-free measurements on cell apoptosis using a terahertz meta-material-based biosensor[J]. Applied physics letters, 2016, 108(24): 209–223.

    Article  Google Scholar 

  27. GENG Z, ZHANG X, FAN Z, et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J]. Scientific reports, 2017, 7(1): 16378.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  28. LIU H G, ZHENG L, MA P Z, et al. Metasurface generated polarization insensitive Fano resonance for high-performance refractive index sensing[J]. Optics express, 2019, 27(9): 13252–13262.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. WANG Y, WANG Y, HU F, et al. Surface-functionalized terahertz metamaterial biosensor used for the detection of exosomes in patients[J]. Langmuir, 2022, 38(12): 3739–3747.

    Article  CAS  PubMed  Google Scholar 

  30. DAI Z, YANG M, MOU T, et al. Tracing pictogram-level chlorothalonil pesticide based on terahertz metal-graphene hybrid metasensors[J]. Optics communications, 2023, 529: 129025.

    Article  CAS  Google Scholar 

  31. MU T, YE Y, DAI Z, et al. Silver nanoparticles-integrated terahertz metasurface for enhancing sensor sensitivity[J]. Optics express, 2022, 30(23): 41101–41109.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. ZHAO R, YE Y, DAI Z, et al. Research on specific identification method of substances through terahertz metamaterial sensors[J]. Results in physics, 2022, 43: 106055.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Liu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

This work has been supported by the Natural Science Foundation of Guangdong Province (No.2022A1515011409), the Youth Project of National Natural Science Foundation of China (Nos.52105268 and 62001200), the Science and Technology Program of Shaoguan (Nos.2019sn056, 2019sn066 and 200811094530811), the Key Project of Shaoguan University (Nos.SZ2017KJ08 and SZ2020KJ02), and the Natural Science Foundation of Fujian Province (No.2020J01817).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J. Antibody-modified integrated microfluidic terahertz biosensor for detection of breast cancer biomarkers. Optoelectron. Lett. 20, 249–256 (2024). https://doi.org/10.1007/s11801-024-3109-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-024-3109-2

Document code

Navigation