Skip to main content
Log in

Nitrogen air lasing induced by multiple filaments array

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Air lasing emission by launching intense ultrafast laser pulses in atmosphere has recently attracted increasing interest in the ultrafast laser science and atmospheric science fields, especially for remote sensing techniques. We demonstrated the fluorescence emissions at 337 nm, 357 nm and 391 nm induced by multiple filaments using four kinds of step phase plates. Our results have indicated that the fluorescence signal has been amplified as it propagates along the filament through amplified spontaneous emission (ASE), and the fluorescence intensity is also enhanced in the backward direction via multiple filaments. Furthermore, the gain coefficient through ASE is increased with the number of filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHIN S L, HOSSEINI S A, LIU W, et al. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges[J]. Canadian journal of physics, 2005, 83(9): 863–905.

    Article  ADS  Google Scholar 

  2. CHIN S L, THÉBERGE F, LIU W. Filamentation nonlinear optics[J]. Applied physics B, 2007, 86(3): 477–483.

    Article  Google Scholar 

  3. COUAIRON A, MYSYROWICZ A. Femtosecond filamentation in transparent media[J]. Physics reports, 2007, 441(2–4): 47–189.

    Article  ADS  Google Scholar 

  4. BERGÉ L, SKUPIN S, NUTER R, et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on progress in physics, 2007, 70(10): 1633–1713.

    Article  ADS  Google Scholar 

  5. KASPARIAN J, WOLF J P. Physics and applications of atmospheric nonlinear optics and filamentation[J]. Optics express, 2008, 16(1): 466–493.

    Article  ADS  Google Scholar 

  6. BÉJOT P, KASPARIAN J, HENIN S, et al. Higherorder Kerr terms allow ionization-free filamentation in gases[J]. Physical review letters, 2010, 104(10): 103903.

    Article  ADS  Google Scholar 

  7. BÉJOT P, HERTZ E, KASPARIAN J, et al. Transition from plasma-driven to Kerr-driven laser filamentation[J]. Physical review letters, 2011, 106(24): 243902.

    Article  ADS  Google Scholar 

  8. XI T T, LU X, ZHANG J. Interaction of light filaments generated by femtosecond laser pulses in air[J]. Physical review letters, 2006, 96(2): 025003.

    Article  ADS  Google Scholar 

  9. MA Y Y, LU X, XI T T, et al. Filamentation of interacting femtosecond laser pulses in air[J]. Applied physics B, 2008, 93(2): 463–468.

    Article  Google Scholar 

  10. SHIM B, SCHRAUTH S E, HENSLEY C J, et al. Controlled interactions of femtosecond light filaments in air[J]. Physical review A, 2010, 81(6): 061803.

    Article  ADS  Google Scholar 

  11. TZORTZAKIS S, BERGÉ L, COUAIRON A, et al. Breakup and fusion of self-guided femtosecond light pulses in air[J]. Physical review letters, 2001, 86(24): 5470–5473.

    Article  ADS  Google Scholar 

  12. GAO H, CHU W, YU G, et al. Femtosecond laser filament array generated with step phase plate in air[J]. Optics express, 2013, 21(4): 4612–4622.

    Article  ADS  Google Scholar 

  13. LI H, LIU J, FENG Y, et al. Temporal and phase measurements of ultraviolet femtosecond pulses at 200 nm by molecular alignment based frequency resolved optical gating[J]. Applied physics letters, 2011, 99(1): 011108.

    Article  ADS  Google Scholar 

  14. WANG T J, DAIGLE J F, YUAN S, et al. Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air[J]. Physical review A, 2011, 83(5): 053801.

    Article  ADS  Google Scholar 

  15. LI M, LI W, SHI Y, et al. Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses[J]. Applied physics letters, 2012, 101(16): 161104.

    Article  ADS  Google Scholar 

  16. XU H, LÖTSTEDT E, IWASAKI A, et al. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling[J]. Nature communications, 2015, 6: 8347.

    Article  ADS  Google Scholar 

  17. YAO J, JIANG S, CHU W, et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields[J]. Physical review letters, 2016, 116(14): 143007.

    Article  ADS  Google Scholar 

  18. MITRYUKOVSKIY S, LIU Y, DING P, et al. Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses[J]. Optics express, 2014, 22(11): 12750–12759.

    Article  ADS  Google Scholar 

  19. DOGARIU A, MICHAEL J B, SCULLY M O, et al. High-gain backward lasing in air[J]. Science, 2011, 331(6016): 442–445.

    Article  ADS  Google Scholar 

  20. LUO Q, LIU W, CHIN S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied physics B, 2003, 76(3): 337–340.

    Article  Google Scholar 

  21. YAO J, ZENG B, XU H, et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical review A, 2011, 84(5): 051802.

    Article  ADS  Google Scholar 

  22. YAO J, LI G, JING C, et al. Remote creation of coherent emissions in air with two-color ultrafast laser pulses[J]. New journal of physics, 2013, 15(2): 023046.

    Article  ADS  Google Scholar 

  23. BRITTON M, LAFERRIERE P, KO D H, et al. Testing the role of recollision in N2+ air lasing[J]. Physical review letters, 2018, 120(13): 133208.

    Article  ADS  Google Scholar 

  24. XU H L, AZARM A, BERNHARDT J, et al. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air[J]. Chemical physics, 2009, 360(1–3): 171–175.

    Article  ADS  Google Scholar 

  25. XU H L, AZARM A, CHIN S L. Controlling fluorescence from N2 inside femtosecond laser filaments in air by two-color laser pulses[J]. Applied physics letters, 2011, 98(14): 141111.

    Article  ADS  Google Scholar 

  26. BRAUN A, KORN G, LIU X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics letters, 1995, 20(1): 73–75.

    Article  ADS  Google Scholar 

  27. LIU W, PETIT S, BECKER A, et al. Intensity clamping of a femtosecond laser pulse in condensed matter[J]. Optics communications, 2002, 202(1–3): 189–197.

    Article  ADS  Google Scholar 

  28. SKUPIN S, BERGÉ L, PESCHEL U, et al. Filamentation of femtosecond light pulses in the air: turbulent cells versus long-range clusters[J]. Physical review E, 2004, 70(4): 046602.

    Article  ADS  Google Scholar 

  29. TALEBPOUR A, YANG J, CHIN S L. Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse[J]. Optics communications, 1999, 163(1–3): 29–32.

    Article  ADS  Google Scholar 

  30. LIU W, CHIN S L. Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation[J]. Physical review A, 2007, 76(1): 013826.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge Professor LIU Weiwei for his discussions and assistance in setting up this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Sun.

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61605144), the Natural Science Foundation of Tianjin City (No.17JCQNJC02000), the Tianjin Municipal Education Commission Program (No.2017KJ099), and the Undergraduate Innovation and Entrepreneurship Training Program of Tiangong University (No.202010058106).

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Li, C., Gao, Z. et al. Nitrogen air lasing induced by multiple filaments array. Optoelectron. Lett. 18, 354–359 (2022). https://doi.org/10.1007/s11801-022-1182-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-022-1182-y

Document code

Navigation