Skip to main content
Log in

Numerical research on mid-infrared supercontinuum generation in Ge11.5As24Se64.5 few-mode photonic crystal fibers

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Based on the nonlinear and mode coupling effect in few-mode photonic crystal fiber (FM-PCF), an approach for supercontinuum (SC) generation in the mid-infrared (MIR) region is proposed. The propagation characteristics of Ge11.5As24Se64.5 FM-PCF have been analyzed and optimized by the full-vector finite element method. The two-mode generalized nonlinear Schrodinger equation (TM-GNLSE) is set up, and the SC generation has been analyzed by the split-step Fourier method. The SC from 1.80 µm to 11.32 µm is generated by pumping 3.0-cm-long fiber at the central wavelength of 3.0 µm, the peak power of 120 W, and the pulse duration of 250 fs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STEINMEYER G, SKIBINA J S. Supercontinua: entering the mid-infrared[J]. Nature photonics, 2014, 8(11): 814–815.

    Article  ADS  Google Scholar 

  2. KALRA S, VYAS S, TIWARI M, et al. Multi-material photonic crystal fiber in MIR region for broadband supercontinuum generation[M]//Optical and wireless technologies. Berlin, Heidelberg: Springer, 2018, 472: 199–209.

    Google Scholar 

  3. WEI W, PENG X, DAI S, et al. Visible to mid-infrared supercontinuum generated in novel GeS2−Ga2S3−CsI step-index fiber[J]. Journal of modern optics, 2019, 66(11): 1–7.

    Article  ADS  Google Scholar 

  4. ZHU Y, ZHENG Z, GE X, et al. High-power, ultra-broadband supercontinuum source based upon 1/1.5 m dual-band pumping[J]. Chinese optics letters, 2021, 19(4): 041403–1–041403–6.

    Article  ADS  Google Scholar 

  5. SAINI T S, KUMAR A, SINHA R K. Broadband mid-infrared supercontinuum spectra spanning 2–15 µm using As2Se3 chalcogenide glass triangular-core graded index photonic crystal fiber[J]. Journal of light wave technology, 2015, 33(18): 3914–3920.

    Article  ADS  Google Scholar 

  6. CHENG T, NAGASAKA K, TUAN T H, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1µm in a chalcogenide step-index fiber[J]. Optics letters, 2016, 41(9): 2117–2120.

    Article  ADS  Google Scholar 

  7. WU B, ZHAO Z, WANG X, et al. Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber[J]. Optical materials express, 2018, 8(5): 1341–1348.

    Article  ADS  Google Scholar 

  8. GAO W, AMRAOUI M E, LIAO M, et al. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber[J]. Optics express, 2013, 21(8): 9573–9583.

    Article  ADS  Google Scholar 

  9. SHA B, SS A, MF A. Ultra-high birefringent, highly non-linear Ge20Sb15Se65 chalcogenide glass photonic crystal fiber with zero dispersion wavelength for mid-infrared applications[J]. Optik, 2020, 225: 1–27.

    Google Scholar 

  10. IRNIS K, OLE B. Multimode supercontinuum generation in chalcogenide glass fibres[J]. Optics express, 2016, 24(3): 2513–2526.

    Article  Google Scholar 

  11. KHALIFA A B, SALEM A B, CHERIF R. Mid-infrared supercontinuum generation in multimode As2Se3 chalcogenide photonic crystal fiber[J]. Applied optics, 2017, 56(15): 4319–4324.

    Article  ADS  Google Scholar 

  12. SWIDERSKI J, MICHALSKA M, MAZE G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system[J]. Optics express, 2013, 21(7): 7851–7857.

    Article  ADS  Google Scholar 

  13. QIN G, XIN Y, KITO C, et al. Ultra-broadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber[J]. Applied physics letters, 2009, 95(16): 584–588.

    Article  Google Scholar 

  14. KUBAT I, PETERSEN C R, MØLLER U V, et al. Thulium pumped mid-infrared 0.9–9µm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers[J]. Optics express, 2014, 22(4): 3959–3967.

    Article  ADS  Google Scholar 

  15. SAFAEI A, BOLORIZADEH M A. Quantum mechanical treatment of the third order nonlinear term in NLS equation and the supercontinuum generation[C]//Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, August 28–September 1, 2016, San Diego, California, USA. Washington: SPIE, 2016: 995803.

    Google Scholar 

  16. CHAITANYA A, SINGH S T, AJEET K, et al. Ultra broad-band mid-IR supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide graded-index photonic crystal fiber: design and analysis[J]. Applied optics, 2016, 55(36): 10138–10145.

    Article  ADS  Google Scholar 

  17. FRANCESCO P, PETER H. Description of ultrashort pulse propagation in multimode optical fibers[J]. Journal of the optical society of America B, 2008, 25(10): 1645–1654.

    Article  Google Scholar 

  18. FANG Y T, LIANG Z C. Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave[J]. Optics communications, 2010, 283(10): 2102–2108.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Shi.

Additional information

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

This work has been supported by the National Natural Science Foundation of China (No.61571237), and the Postgraduate Research and Innovation Program Project of Jiangsu (No.KYCX20_0795).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Zhang, T. & Xu, C. Numerical research on mid-infrared supercontinuum generation in Ge11.5As24Se64.5 few-mode photonic crystal fibers. Optoelectron. Lett. 18, 0233–0237 (2022). https://doi.org/10.1007/s11801-022-1121-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-022-1121-y

Document code

Navigation