Optoelectronics Letters

, Volume 15, Issue 2, pp 108–112 | Cite as

An improved differential algorithm for the critical-angle refractometer

  • Jun-wei Ye (叶骏伟)Email author
  • Min Xia (夏珉)
  • Ke-cheng Yang (杨克成)


Due to the limit of the pixel size of the charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS) sensor, the traditional differential algorithm has a limited measuring accuracy by determining the critical angle in integral pixel. In this paper, we present a practical algorithm based on the centroid value of the reflective ratio around the critical angle pixel to address the traditional differential algorithm problem of determining the critical angle under sub-pixel in a critical angle refractometer (CAR). When the change of refractive index (RI) of a liquid sample is beyond the sensitivity of the traditional differential algorithm, the RI of the liquid can be obtained by using the centroid value of reflectivity around the critical angle pixel. The centroid value is associated with the RI change of the liquid in sub-pixel. Demonstrated by both theoretical analyses and experimental results using saline solutions with RI that changes in sub-pixel tested through the reflective CAR, the algorithm is found to be computationally effective and robust to expand the measuring accuracy of the Abbe-type refractometer in sub-pixel.

Document code


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Augusto Garcia-Valenzuela and Humberto Contreas-Tello, Opt. Lett. 38, 775 (2013).ADSCrossRefGoogle Scholar
  2. [2]
    Wenping Guo, Min Xia, Wei Li, Jie Dai and Kecheng Yang, Rec. Sci. Instrum. 82, 053108 (2011).ADSCrossRefGoogle Scholar
  3. [3]
    Junwei Ye, Min Xia, Hao Liu, Wei Li, Wenping Guo, Xiong Changxin and Kecheng Yang, Europhysics Letters 104, 20001 (2013).ADSCrossRefGoogle Scholar
  4. [4]
    Junwei Ye, Kecheng Yang, Hao Liu, Jie Dai, Wenping Guo, Wei Li and Min Xia, Optics & Laser Technology 65, 175 (2015).ADSCrossRefGoogle Scholar
  5. [5]
    Hao Liu, Junwei Ye, Kecheng Yang, Min Xia, Wenping Guo and Wei Li, Applied Optics 54, 6046 (2015).ADSCrossRefGoogle Scholar
  6. [6]
    Michael McClimans, Charles LaPlante, David Bonner and S. Bali., Appl. Opt. 45, 6477 (2006).ADSCrossRefGoogle Scholar
  7. [7]
    Wenping Guo, Min Xia, Wei Li, Jie Dai, Xiaohui Zhang and Kecheng Yang, Meas. Sci. Technol. 23, 47001 (2012).CrossRefGoogle Scholar
  8. [8]
    Jukka A. Raty and Kai-Erik Peiponen, Applied Spectroscopy 53, 1123 (1999).ADSCrossRefGoogle Scholar
  9. [9]
    Llpo Niskanen, Jukka Raty and Kai-Erik Peiponen, Opt. Lett. 32, 862 (2007).ADSCrossRefGoogle Scholar
  10. [10]
    W. R. Calhoun, H. Maeta, S. Roy, L. M. Bail and S. Bail, J. Dairy. Sci. 93, 3497 (2010).CrossRefGoogle Scholar
  11. [11]
    W.R. Calhoun, H. Maeta, A. Combs, L.M Bali and S. Bali., Opt. Lett. 35, 1224 (2010).ADSCrossRefGoogle Scholar
  12. [12]
    Augusto Garcia-Valenzuela and Humberto Contreas-Tello, Opt. Express 13, 6723 (2005).ADSCrossRefGoogle Scholar
  13. [13]
    Mansur Mohammadi, Adv. Colloid Interface Sci. 62, 17 (1995).CrossRefGoogle Scholar
  14. [14]
    M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press, Cambridge, UK, 2002.Google Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jun-wei Ye (叶骏伟)
    • 1
    Email author
  • Min Xia (夏珉)
    • 2
  • Ke-cheng Yang (杨克成)
    • 2
  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong Institute of Electro-OpticsWuhanChina
  2. 2.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations