Skip to main content
Log in

Enhancement of electron injection in inverted bottom-emitting organic light-emitting diodes using Al/LiF compound thin film

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al (x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al (x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Tang and S. A. Vanslyke, Applied Physics Letters 51, 913 (1987).

    Article  ADS  Google Scholar 

  2. Obolda A, Ai X and Zhang M, ACS Applied Materials & Interfaces 8, 35472 (2016).

    Article  Google Scholar 

  3. Kou Z, Xu Y, Cheng S and Wang X P, Journal of Display Technology 12, 1668 (2016).

    Google Scholar 

  4. MIAO Yan-qin, GAO Zhi-xiang, ZHANG Ai-qin, LI Yuan-hao, WANG Hua, JIA Hu-sheng, LIU Xu-guang and T. Taiju, Chinese Physics B 24, 577 (2015).

    Google Scholar 

  5. Zanoni K P S and Iha N Y M, Synthetic Metals 222, 393 (2016).

    Article  Google Scholar 

  6. HO Meng-huan, WU Chang-yen, CHEN Teng-ming and C. H. Chen, Journal of Luminescence 131, 78 (2011).

    Article  ADS  Google Scholar 

  7. X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwitz-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig, and K. Leo, Applied Physics Letters 81, 922 (2002).

    Article  ADS  Google Scholar 

  8. T. Y. Chu, J. F. Chen, S. Y. Chen, C. J. Chen and C. H. Chen, Applied Physics Letters 89, 053503 (2006).

    Article  ADS  Google Scholar 

  9. LOU Xia, WANG Xin-xin, LIU Chang-hai, LIU Jie, CUI Ze-qun, LU Zhi-hao, GAO Xu and WANG Sui-dong, Organic Electronics 28, 88 (2016).

    Article  Google Scholar 

  10. Chen Y, Wei X and Li Z, Journal of Materials Chemistry C 5, 33 (2017).

    Google Scholar 

  11. Liu Y, Wu X and Xiao Z, Applied Surface Science 413, 302 (2017).

    Article  ADS  Google Scholar 

  12. LIU Wen-bo, LIU Shi-hao, YU Jing, ZHANG Wei, WEN Xue-mei, YIN Yong-ming, ZHANG Le-tian, CHEN Ping and XIE Wen-fa, Applied Physics Letters 104, 093305 (2014).

    Article  ADS  Google Scholar 

  13. LIU Jun, WU Xin-kai, SHI Xin-dong, WANG Jing, MIN Zhi-yuan, WANG Yang, YANG Mei-jun and HE Gu-feng, ACS Applied Materials & Interfaces 7, 6438 (2015).

    Article  Google Scholar 

  14. CHANG Chih-hao, HUANG Hao-siang, SU Yu-de, LIANG Yi-hu, CHANG Yu-shuo, CHIU Chuan-hao and CHANG Hsin-hua, Improvement of Operation Voltage and Efficiency in Inverted Blue Phosphorescent Organic Light-Emitting Devices, Organic Light Emitting Materials and Devices XVII, 88291W (2013).

    Google Scholar 

  15. LI Shao-Jie and LI Yan-Fei, Journal of Optoelectronics ·Laser 24, 11 (2013). (in Chinese)

    Google Scholar 

  16. LI Huai-kun, ZHANG Fang-hui, CHENG Jun and DING Lei, Chinese Journal of Luminescence 37, 38 (2016). (in Chinese)

    Article  ADS  Google Scholar 

  17. ZHANG Wei, ZHANG Fang-hui and HUANG Jin, Spectroscopy and Spectral Analysis 34, 322 (2014). (in Chinese)

    Google Scholar 

  18. WANG Ji-hui and MENG Hong-mei, Ordnance Material Science and Engineering 31, 1 (2008).

    Google Scholar 

  19. WANG Li, WU Yong, SHAN Guo-gang, Geng Yun, ZHANG Jian-zhao, WANG Dong-mei, YANG Guo-chun and SU Zhong-min, Journal of Materials Chemistry C 2, 2859 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-hui Zhang  (张方辉).

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.61076066 and 61605105), and the Shaanxi Science & Technology Development Program (No.2011KTCQ01-09).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Qy., Zhang, Fh. Enhancement of electron injection in inverted bottom-emitting organic light-emitting diodes using Al/LiF compound thin film. Optoelectron. Lett. 14, 189–194 (2018). https://doi.org/10.1007/s11801-018-7164-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-018-7164-4

Document code

Navigation