Skip to main content

Advertisement

Log in

Radiometric calibration of hyper-spectral imaging spectrometer based on optimizing multi-spectral band selection

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of source, an on-orbit radiometric calibration method is designed in this paper. This chain is based on the spectral inversion accuracy of the calibration light source. We compile the genetic algorithm progress which is used to optimize the channel design of the transfer radiometer and consider the degradation of the halogen lamp, thus realizing the high accuracy inversion of spectral curve in the whole working time. The experimental results show the average root mean squared error is 0.396%, the maximum root mean squared error is 0.448%, and the relative errors at all wavelengths are within 1% in the spectral range from 500 nm to 900 nm during 100 h operating time. The design lays a foundation for the high accuracy calibration of imaging spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tae Hyoung Kim, Hong Jin Kong, Tae Hoon Kim and Jae Sung Shin, Optics Communications 283, 355 (2010).

    Article  ADS  Google Scholar 

  2. G. Chander, B. L. Markham and D. L. Helder, Remote Sensing of Environment 113, 893 (2009).

    Article  ADS  Google Scholar 

  3. Andreas Baumgartner, Peter. Gege, Class H. Köhler, Karim Lenhard and Thomas Schwarzmaier, Proc. SPIE 8533, 85331H (2012).

    Google Scholar 

  4. Hassan Oudrari, Jeff Mcintire, Xiaoxiong Xiong, James Butler, Jack Ji, Thomas Schwarting, Shihyan Lee and Boryana Efremova, Journal of Remote Sensing 8,1 (2016).

    ADS  Google Scholar 

  5. G. P. Eppeldauer, S. W. Brown, T. C. Larason, M. Racz and K. R. Lykke, Metrologia 37, 531 (2000).

    Article  ADS  Google Scholar 

  6. J. J Butler and R. A Barnes, Metrologia 40, S70 (2003).

    Article  ADS  Google Scholar 

  7. G. Thuillier, T. Foujols, D. Bolsée, Didier. Gillotay, Michel Hersé, W. Peetermans, W. Decuyper, H. Mandel, Peter Sperfeld, S. Pape, D. R. Taubert and Jürgen Hartmann, Solar Physics 257,185 (2009).

    Article  ADS  Google Scholar 

  8. S. Uprety, C. Cao and S. Blonski, International Journal of Remote Sensing 37, 5472 (2016).

    Article  ADS  Google Scholar 

  9. Zhigang Li, Chinese Optics 8, 909 (2015). (in Chinese)

    Article  Google Scholar 

  10. H W Yoon, C E Gibson and P Y Barnes, Metrologia 40, S172 (2003).

    Article  ADS  Google Scholar 

  11. R D Taubert, C Monte, C Baltruschat, A Schirmacher, B Gutschwager, Jürgen Hartmann, J Hollandt, D Kochems, C Küchel and M. te Plate, Metrologia 46, S207 (2009).

    Article  ADS  Google Scholar 

  12. M. Folkman, J. Pearlamn, L. Liao and Peter J areeke, Proc. SPIE 4151, 40 (2001).

    Article  ADS  Google Scholar 

  13. J. Marmo, M. A. Folkman, C. Y. Kuwahara and Charles T. Willoughby, Proc. SPIE 2819, 80 (1996).

    Article  ADS  Google Scholar 

  14. B. Carol Johnson, Steven W. Brown, George Eppeldauer and K. R. Lykke, International Journal of Remote Sensing 24, 339 (2003).

    Article  ADS  Google Scholar 

  15. James J. Butler and Robert A. Barnes, Metrologia 40, 70 (2003).

    Article  ADS  Google Scholar 

  16. Weining Zhao, Wei Fang, Liwei Sun, Lihong Cui and Yvpeng Wang, Chinese Physical B 25, 090701 (2015). (in Chinese)

    Article  Google Scholar 

  17. Bo Huang, Caihong Dai and Jialin Yv, Journal of Applied Optics 30, 44 (2009). (in Chinese)

    Google Scholar 

  18. James Lewis Keef and Kurtis J. Thome, Journal of Applied Remote Sensing 3, 033518 (2008).

    Article  Google Scholar 

  19. Nik Anderson, Kurt Thome, Stuart F. Biggar and Jeffrey Czapla-Myers, Proc. SPIE 7081, 708104-1 (2008).

    Google Scholar 

  20. Jianmin Shi, Xiuqing Hu, Wunbing Xu and Xiaobing Zheng, Journal of Atmospheric and Environmental Optics 9, 37 (2014). (in Chinese)

    Google Scholar 

  21. P. Jarecke, K. Yokoyama and P. Barry, Proc. SPIE 6, 2825 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-peng Wang  (王玉鹏).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.41474161) and the National High Technology Research and Development Program of China (No.2015AA123703).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Lw., Ye, X., Fang, W. et al. Radiometric calibration of hyper-spectral imaging spectrometer based on optimizing multi-spectral band selection. Optoelectron. Lett. 13, 405–408 (2017). https://doi.org/10.1007/s11801-017-7174-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-017-7174-7

Document code

Navigation