Skip to main content
Log in

The nonlinearity measurement of charge-coupled device array spectrometer using colorful LED

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A nonlinearity measurement of the charge-coupled device (CCD) array spectrometer using flux addition and comparison method is described. The light with various colors from the colorful light emitting diode (LED) light source is applied to measure the nonlinearity of the spectrometer at different wavelengths, respectively. An high-end CCD array spectrometer is tested. For colorful LED light sources, the nonlinearity factors of the CCD array spectrometer (absolute value) are as follows: k<0.8% for white light, k <1.1% for red light, k <2.2% for green light and k<4.7% for blue light. By using those quasi-monochromatic light sources, it is shown that the nonlinearity depends on the wavelength. It is important to be wariness about the spectral nonlinearity and related uncertainty evaluation when the narrow-band light source is tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zong Y, Brown S W, Johnson B C, Lykke K R and Ohno Y, Applied Optics 45, 1111 (2006).

    Article  ADS  Google Scholar 

  2. Nevas S, Gröbner J, Egli L and Blumthaler M, Applied Optics 53, 4313 (2014).

    Article  ADS  Google Scholar 

  3. Cho J W, Choi Y S, Lee J C, Koo I S and Hong S B, Journal of Institute of Control 16, 586 (2010).

    Google Scholar 

  4. Wang Y Q, Liu W Y, Ding T F, ZHENG X F, WANG R G, XU X Z, CHEN Y and WANG Y, Chinese Journal of Liquid Crystals & Displays 29, 137 (2014).

    Article  Google Scholar 

  5. Jablonski J, Arecchi A, Jacobs J and Annicchiarco T, Stray Light Rejection Techniques for LED Measurements Using CCD Based Spectrometers, SPIE OPTO: Integrated Optoelectronic Devices, 72311E (2009).

    Google Scholar 

  6. Hong Y and Kanicki J, Review of Scientific Instruments 74, 3572 (2003).

    Article  ADS  Google Scholar 

  7. Zhao W, Liu H and Liu J, Proceedings of SPIE 10023, 100230Q (2016).

    Article  Google Scholar 

  8. Godo K, Niwa K, Kinoshita K, Ichino Y and Zama T, Metrologia 53, 853 (2016).

    Article  ADS  Google Scholar 

  9. Shaw M and Goodman T, Applied Optics 47, 2637 (2008).

    Article  ADS  Google Scholar 

  10. Xia G, Liu Q, Zhou H and Yu F, Proceedings of SPIE 9677, 96770J (2015).

    ADS  Google Scholar 

  11. Fu H K, Liu Y L, Chen T T, Wang C P and Chou P T, IEEE Transactions on Electron Devices 61, 3796 (2014).

    Article  ADS  Google Scholar 

  12. Shin D J, Lee D H, Park C W and Park S N, Metrologia 42, 154 (2005).

    Article  ADS  Google Scholar 

  13. Shin D J, Park S, Jeong K L, Park S N and Lee D H, Metrologia 51, 25 (2014).

    Article  ADS  Google Scholar 

  14. Edwards J G and Jefferies R, Journal of Physics E Scientific Instruments 3, 518 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-qiang Zhao  (赵伟强).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61505191). This paper was recommended by the 9th International Conference on Information Optics and Photonics (CIOP 2017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Wq., Liu, H. & Liu, J. The nonlinearity measurement of charge-coupled device array spectrometer using colorful LED. Optoelectron. Lett. 13, 436–438 (2017). https://doi.org/10.1007/s11801-017-7145-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-017-7145-z

Document code

Navigation