Advertisement

Optoelectronics Letters

, Volume 13, Issue 2, pp 147–150 | Cite as

Influence of linear birefringence on Faraday effect measurement for optical fibers

  • Huang-chao Chen (陈黄超)
  • Jian-xiang Wen (文建湘)
  • Yi Huang (黄怿)
  • Wei-long Dong (东惟龙)
  • Fu-fei Pang (庞拂飞)
  • Yan-hua Luo (罗艳华)
  • Gang-ding Peng (彭纲定)
  • Zhen-yi Chen (陈振宜)
  • Ting-yun Wang (王廷云)
Article
  • 89 Downloads

Abstract

The influence of the linear birefringence on magneto-optical property measurement for optical fibers is investigated theoretically and experimentally. The evolution of polarization in fibers is simulated by the Jones matrix. To verify this theoretical model, a magneto-optical system is built to measure the input azimuth, output azimuth and ellipticity. The Faraday rotation of spun fibers with different pitches is measured. The Verdet constant increases, while the linear birefringence decreases as the pitch becomes smaller. For spun fibers with 1 mm pitch, the Verdet constant can be enhanced by about 20.7% at 660 nm, compared with that of the unspun fiber. The results indicate that smaller linear birefringence can provide more accurate Faraday rotation measurement.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Wen, M. A. Terrel and H. K. Kim, J. Lightw. Technol. 27, 3194 (2009).ADSCrossRefGoogle Scholar
  2. [2]
    G. M. Muller, X. Gu, L. Yang, A. Frank and K. Bohnert, Opt Express 24, 11164 (2016).ADSCrossRefGoogle Scholar
  3. [3]
    D. Jamon, F. Royer and F. Parsy, J. Lightw. Technol. 31, 3151 (2013).ADSCrossRefGoogle Scholar
  4. [4]
    C. D. Perciante, J. Membr. Sci. 25, 1994 (2008).Google Scholar
  5. [5]
    C. D. Perciante, S. Aparicio and R. Illa, Appl. Opt. 54, 5708 (2015).ADSCrossRefGoogle Scholar
  6. [6]
    Y Huang, L Chen, F Pang and J Wen, The Measurement System of Birefringence and Verdet Constant of Optical Fiber, Proceedings of SPIE-The International Society for Optical Engineering, 9046 (2013).Google Scholar
  7. [7]
    R Beravat, GK Wong, XM Xi, MH Frosz and JRP St, Opt. Lett. 41, 1672 (2016).ADSCrossRefGoogle Scholar
  8. [8]
    M. Martinelli and P. Martelli, Adv. Opt. Photonics 9, 129 (2017).CrossRefGoogle Scholar
  9. [9]
    T Chartier, A Hideur, C Özkul, F Sanchez and GM Stéphan, Appl. Opt. 40, 5343 (2001).ADSCrossRefGoogle Scholar
  10. [10]
    S. Kim, Y. P. Hong, Y. G Kun and D. J. Lee, Adv. Opt. 56, 1701 (2017).ADSGoogle Scholar
  11. [11]
    O. Slezk, P. Yasuhara, A. Lucianetti and T. Mocek, Opt. Mater. Express 6, 3683 (2016).CrossRefGoogle Scholar
  12. [12]
    S. A. Vasiliev, Y. V. Przhiyalkovsky and P. I. Gnusin, Opt. Express 24, 11290 (2016).ADSCrossRefGoogle Scholar
  13. [13]
    J. Wen, W. Liu and Y. Huang, J. Lightw. Technol. 33, 2674 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Huang-chao Chen (陈黄超)
    • 1
  • Jian-xiang Wen (文建湘)
    • 1
  • Yi Huang (黄怿)
    • 1
  • Wei-long Dong (东惟龙)
    • 1
  • Fu-fei Pang (庞拂飞)
    • 1
  • Yan-hua Luo (罗艳华)
    • 2
  • Gang-ding Peng (彭纲定)
    • 2
  • Zhen-yi Chen (陈振宜)
    • 1
  • Ting-yun Wang (王廷云)
    • 1
  1. 1.Key Laboratory of Specialty Fiber Optics and Optical Access NetworksShanghai UniversityShanghaiChina
  2. 2.Photonics & Optical Communications, School of Electrical Engineering & TelecommunicationsUniversity of New South WalesSydneyAustralia

Personalised recommendations