Advertisement

Optoelectronics Letters

, Volume 13, Issue 2, pp 120–122 | Cite as

A compact tunable metamaterial filter based on split-ring resonators

  • Ya-juan Zhao (赵亚娟)
  • Bi-cheng Zhou (周必成)
  • Ze-kui Zhang (张泽奎)
  • Rong Zhang (张榕)
  • Bao-yi Li (李宝毅)
Article
  • 68 Downloads

Abstract

A tunable metamaterial filter is designed based on split-ring resonators (SRRs) in this paper. The metamaterial filter has a compact size of 15 mm×20 mm, and miniaturization is realized by using the SRRs. By loading tunable devices, the continuous operation of the filter is realized at X band (from 10.7 GHz to 12 GHz), the bandwidth is about 13%, the minimum return loss is 35 dB, and the maximum insertion loss is 0.37 dB. The results illustrate that the metamaterial filter shows the compact size, wide bandwidth and good band pass characteristics.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pantoli L, Stornelli V and Leuzzi G, Electronics Letters 52, 86 (2015).CrossRefGoogle Scholar
  2. [2]
    Safari M, Shafai C and Shafai L, IEEE Transactions on Antennas and Propagation 63, 1014 (2015).ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    Guo J, Wu K, XiaoY C, Dong W, Zhang X D, Liu C X and Chen W Y, Journal of Optoelectronics·Laser 26, 1274 (2015).(in Chinese)Google Scholar
  4. [4]
    Wang Q, Shen Y Y, Xu E M and Li P L, Journal of Optoelectronics ·Laser 26, 1248 (2015).(in Chinese)Google Scholar
  5. [5]
    Tong Z R, Yang H and Cao Y, Optoelectronics Letters 12, 264 (2016).ADSCrossRefGoogle Scholar
  6. [6]
    Zhao Y J, Jiang B, Li B Y and Wang D H, Optoelectronics Letters 12, 273 (2016).Google Scholar
  7. [7]
    Zhang J J, Gao L and Yao J P, IEEE Photonics Technology Letters 26, 326 (2014).ADSCrossRefGoogle Scholar
  8. [8]
    Zhao Y J, Zhang R, Wang D H, Zhou B C and Jiang B, Materials Review 26, 167 (2015).(in Chinese)Google Scholar
  9. [9]
    Li J Q, Xiao Y C, Dong W and Zhang X D, Optoelectronics Letter 12, 276 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    Aghanejad I, Abiri H and Yahaghi A, IEEE Transactions on Antennas and Propagation 60, 4074 (2012).ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    Rudolph S M and Grbic A, IEEE Transactions on Antennas and Propagation 60, 3661 (2012).ADSCrossRefGoogle Scholar
  12. [12]
    Carignan L P, Yelon A and Menard D, IEEE Transactions on Microwave Theory and Techniques 59, 2568 (2011).ADSCrossRefGoogle Scholar
  13. [13]
    Zou Y P, Technology Innovation and Application 3, 125 (2016).(in Chinese)Google Scholar
  14. [14]
    Ali K Gorur, Ceyhun Karpuz, Ahmet Ozek and Murat Emur, Microwave and Optical Technology Letters 56, 2211 (2014).CrossRefGoogle Scholar
  15. [15]
    Liu H W, Lei J H, Zhan X, Guan X H, Ji L Y and Ma Z W, Applied Physics Letters 104, 222602 (2014).ADSCrossRefGoogle Scholar
  16. [16]
    Vaishali R, Seema A and Animesh B, Microwave and Optical Technology Letters 57,1222 (2015).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ya-juan Zhao (赵亚娟)
    • 1
  • Bi-cheng Zhou (周必成)
    • 1
  • Ze-kui Zhang (张泽奎)
    • 1
  • Rong Zhang (张榕)
    • 1
  • Bao-yi Li (李宝毅)
    • 1
  1. 1.Key Laboratory of Electromagnetic Protection Materials and Technology in Shanxi ProvinceNo.33 Research Institute of China Electronics Technology Group CorporationTaiyuanChina

Personalised recommendations