Optoelectronics Letters

, Volume 13, Issue 2, pp 123–126 | Cite as

Compensation to the output drift for cooled infrared imaging systems at various ambient temperatures

  • Qi-jie Tian (田棋杰)
  • Song-tao Chang (常松涛)
  • Feng-yun He (何锋赟)
  • Yan-feng Qiao (乔彦 峰)
Article
  • 21 Downloads

Abstract

A method is proposed to compensate the output drift for cooled infrared imaging systems at various ambient temperatures. By calibrating the cryogenic infrared detector which absorbs the radiant flux of blackbody directly, the internal factors can be obtained. Then, by combining the calibration result of infrared imaging system at an arbitrary ambient temperature, the output drift can be calculated and compensated at various integration time and ambient temperatures. Experimental results indicate that the proposed method can eliminate the effect of ambient temperature fluctuation on the system output efficiently.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Ata and K. C. Nakiboglu, Optics Communications 283, 3901 (2010).ADSCrossRefGoogle Scholar
  2. [2]
    Sun Z Y, Chang S T and Zhu W, Applied Optics 54, 4659 (2015).ADSCrossRefGoogle Scholar
  3. [3]
    M. Ochs, A. Schulz and H. J. Bauer, Infrared Physics & Technology 53, 112 (2010).ADSCrossRefGoogle Scholar
  4. [4]
    Lü Y, He X, Wei Z H, Sun Z Y and Chang S T, Applied Optics 55, 2169 (2016).ADSCrossRefGoogle Scholar
  5. [5]
    Chang S T, Zhang Y Y, Sun Z Y and Li M, Applied Optics 53, 6274 (2014).ADSCrossRefGoogle Scholar
  6. [6]
    Dong S D, Yang X F, Yang W, Yan H and Wang Y, Journal of Infrared, Millimeter, and Terahertz Waves 29, 499 (2008).ADSCrossRefGoogle Scholar
  7. [7]
    Zhang D., A Weighted-based Compensation Method of Temperature Drift for Uncooled Infrared Focal Plane Arrays, International Conference on Optical Instruments and Technology, 2015.Google Scholar
  8. [8]
    H. Lee, C. Oh and J. W. Hahn, Infrared Physics & Technology 57, 50 (2013).ADSCrossRefGoogle Scholar
  9. [9]
    M. D. Mermelstein, K. A. Snail and R. G. Priest, Optical Engineering 39, 347 (2000).ADSCrossRefGoogle Scholar
  10. [10]
    B. G. Grant, The Art of Radiometry, 2009.Google Scholar
  11. [11]
    T. Svensson, I. Renhorn and P. Broberg, Evaluation of a Method to Radiometric Calibrate Hot Target Image Data by Using Simple Reference Rources Close to Ambient Temperatures, Proc. SPIE 76620X (2010).Google Scholar
  12. [12]
    Chang S T, Sun Z Y, Zhang Y Y and Zhu W, Acta Physica Sinica 64, 887 (2015).(in Chinese)Google Scholar
  13. [13]
    Tian Q J, Chang S T, Li Z, He F Y and Qiao Y F, Infrared Physics & Technology 81, 1 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Qi-jie Tian (田棋杰)
    • 1
    • 2
  • Song-tao Chang (常松涛)
    • 1
  • Feng-yun He (何锋赟)
    • 1
  • Yan-feng Qiao (乔彦 峰)
    • 1
  1. 1.Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations