Optoelectronics Letters

, Volume 13, Issue 2, pp 156–160 | Cite as

Efficiency enhancement for the orbital angular momentum photon quantum interface via single photon frequency upconversion

  • Wen-jie Wu (吴文杰)
  • Jian-hui Ma (马建辉)
  • Hai-feng Pan (潘海峰)
  • E Wu (武愕)
  • Huai-xi Chen (陈怀 熹)
  • K. Choge Dismas
  • Wan-guo Liang (梁万国)
Article

Abstract

As the application of orbital angular momentum (OAM) of photon quantum in quantum communication, the OAM photon quantum interface for the transmission wavelength from the telecom communication quantum information storage in visible regime is required. Here we demonstrate the efficiency enhancement for the OAM photon quantum interface based on the frequency upconversion from telecom wavelength to visible regime by sum-frequency generation. The infrared photons at 1 558 nm carrying different OAM values could be converted to the visible regime at 622.2 nm with the optimal efficiency via adjusting the pump beam waist radius and intensity.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. T. Rakher, L. J. Ma, O. Slattery, X. A. Tang and K. Srinivasan, Nat. Photon. 4, 786 (2010).ADSCrossRefGoogle Scholar
  2. [2]
    P. S. Kuo, J. S. Pelc, O. Slattery, Y. S. Kim, M. M. Fejer and X. Tang, Opt. Lett. 38, 1310 (2013).ADSCrossRefGoogle Scholar
  3. [3]
    J. S. Pelc, Q. Zhang, C. R. Phillips, L. Yu, Y. Yamamoto and M. M. Fejer, Opt. Lett. 37, 476 (2012).ADSCrossRefGoogle Scholar
  4. [4]
    N. SHEN, J. YU, Z. X. HUANG and Z. A. Tang, J. Optoelectron. Laser 25, 845 (2014).(in Chinese)Google Scholar
  5. [5]
    J. H. Ma, X. J. Li, W. J. Wu, K. Huang, H. F. Pan and E Wu, Optoelectron. Lett. 11, 0477 (2015).ADSCrossRefGoogle Scholar
  6. [6]
    X. R. Gu, Y. Li, H. F. Pan, E. Wu and H. P. Zeng, IEEE J. Sel. Top. Quantum Electron. 15, 1748 (2009).CrossRefGoogle Scholar
  7. [7]
    D. Li, Y. Jiang, Y. J. J. Ding, I. B. Zotova and N. S. Prasad, Appl. Phys. Lett. 101, 141126 (2012).ADSCrossRefGoogle Scholar
  8. [8]
    R. K. Tang, X. J. Li, W. J. Wu, H. F. Pan, H. P. Zeng and E Wu, Opt. Express 23, 9796 (2015).ADSCrossRefGoogle Scholar
  9. [9]
    X. R. Gu, K. Huang, H. F. Pan, and H. P. Zeng, Opt. Express 20, 2399 (2012).ADSCrossRefGoogle Scholar
  10. [10]
    G. Shao, Z. Wu, J. Chen, F. Xu and Y. Lu, Phys. Rev. A 88, 063827 (2013).ADSCrossRefGoogle Scholar
  11. [11]
    X. R. Gu, K. Huang, Y. Li, H. F. Pan, E. Wu and H. P. Zeng, Appl. Phys. Lett. 96, 131111 (2010).ADSCrossRefGoogle Scholar
  12. [12]
    K. Huang, X. R. Gu, H. F. Pan, E. Wu and H. P. Zeng, IEEE J. Sel. Top. Quantum Electron. 18, 562 (2012).CrossRefGoogle Scholar
  13. [13]
    R. K. Tang, W. J. Wu, X. J. Li, H. F. Pan, H. P. Zeng and E Wu, IEEE Photon. Tech. Lett. 27, 1642 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wen-jie Wu (吴文杰)
    • 1
  • Jian-hui Ma (马建辉)
    • 1
  • Hai-feng Pan (潘海峰)
    • 1
  • E Wu (武愕)
    • 1
  • Huai-xi Chen (陈怀 熹)
    • 2
  • K. Choge Dismas
    • 2
  • Wan-guo Liang (梁万国)
    • 2
  1. 1.State Key Laboratory of Precision SpectroscopyEast China Normal UniversityShanghaiChina
  2. 2.Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations