Advertisement

Optoelectronics Letters

, Volume 13, Issue 2, pp 90–94 | Cite as

Magnetic fluid based deformable mirror for aberration correction of liquid telescope

  • Jun-qiu Wu (吴君秋)
  • Zhi-zheng Wu (吴智政)
  • Xiang-hui Kong (孔祥会)
  • Zhu Zhang (张柱)
  • Mei Liu (刘梅)
Article

Abstract

A magnetic fluid based deformable mirror (MFDM) that could produce a large stroke more than 100 μm is designed and demonstrated experimentally with respect to the characteristics of the aberration of the liquid telescope. Its aberration correction performance is verified by the co-simulation using COMSOL and MATLAB. Furthermore, the stroke performance of the MFDM and the decentralized linear quadratic Gaussian (LQG) mirror surface control approach are experimentally evaluated with a prototype of MFDM in an adaptive optics system to show its potential application for the large aberration correction of liquid telescopes.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Francois and S. Jean, Optical Engineering 53, 034103(2014).ADSCrossRefGoogle Scholar
  2. [2]
    J. Surdej, O. Absil, P. Bartczak and E. Borra, Proceedings of SPIE - The International Society for Optical Engineering, Ground-based and Airborne Telescopes 6267, 626704 (2006).CrossRefGoogle Scholar
  3. [3]
    H. Paul, Applied Optics 45, 8052 (2006).CrossRefGoogle Scholar
  4. [4]
    R. K. Tyson, Principle of Adaptive Optics, CRC Press, Boca Raton, 2011.Google Scholar
  5. [5]
    H. X. Zhang, J. ZHANG and Y. J. Qiao, Journal of Optoelectronics ?Laser 24, 838 (2013).(in Chinese)Google Scholar
  6. [6]
    L. Xuan, D. Y. Li and Y. G. Liu, Chinese Journal of Liquid Crystal and Displays 30, 1 (2015).(in Chinese)ADSCrossRefGoogle Scholar
  7. [7]
    L. Q. Han and Y. H. You, Journal of Optoelectronics? Laser 26, 857 (2015).(in Chinese)Google Scholar
  8. [8]
    K. L. Wlodarczyk, E. Bryce and N. Schwartz, Review of Scientific Instruments 85, 024502 (2014).ADSCrossRefGoogle Scholar
  9. [9]
    C. Bechet, A. Guesalaga, B. Neichel and V. Fesquet, Optics Express 22, 2994 (2014).CrossRefGoogle Scholar
  10. [10]
    Z. Z. Wu, A. Iqbal and F. Ben Amara, Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems, Berlin, Springer, 2013.CrossRefGoogle Scholar
  11. [11]
    D. Brousseau, S. Thibault, E. F. Borra and S. F. Boivin, Applied Optics 53, 4903 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    Lemmer A J, Griffiths I M and Groff T D, Mathematical and Computational Modeling of a Ferrofluid Deformable Mirror for High-contrast Imaging, SPIE Astronomical Telescopes and Instrumentation, 99122K (2016).Google Scholar
  13. [13]
    J. P. Dery, D. Brousseau and M. Rochette, Journal of Applied Polymer Science 134, 44542 (2016).Google Scholar
  14. [14]
    C. Gollwitzer, G. Matthias and R. Richter, Journal of Fluid Mechanics 571, 455 (2014).ADSCrossRefGoogle Scholar
  15. [15]
    Y. T. Yen, T. Y. Lu and Y. C. Lee, ACS Applied Materials & Interfaces 6, 4292 (2014).CrossRefGoogle Scholar
  16. [16]
    Q. L. Cao, X. T. Han, B. ZHANG and L. Li, IEEE Transactions on Applied Superconductivity 22, 4401504 (2012).CrossRefGoogle Scholar
  17. [17]
    S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, Springer London, 2005.MATHGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jun-qiu Wu (吴君秋)
    • 1
  • Zhi-zheng Wu (吴智政)
    • 1
  • Xiang-hui Kong (孔祥会)
    • 1
  • Zhu Zhang (张柱)
    • 1
  • Mei Liu (刘梅)
    • 1
  1. 1.Department of Precision Mechanical EngineeringShanghai UniversityShanghaiChina

Personalised recommendations