Skip to main content
Log in

Non-blocking four-port optical router based on thermooptic silicon microrings

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

By using silicon-on-insulator (SOI) platform, 12 channel waveguides, and four parallel-coupling one-microring resonator routing elements, a non-blocking four-port optical router is proposed. Structure design and optimization are performed on the routing elements at 1 550 nm. At drop state with a power consumption of 0 mW, the insertion loss of the drop port is less than 1.12 dB, and the crosstalk between the two output ports is less than −28 dB; at through state with a power consumption of 22 mW, the insertion loss of the through port is less than 0.45 dB, and the crosstalk between the two output ports is below −21 dB. Routing topology and function are demonstrated for the four-port optical router. The router can work at nine non-blocking routing states using the thermo-optic (TO) effect of silicon for tuning the resonance of each switching element. Detailed characterizations are presented, including output spectrum, insertion loss, and crosstalk. According to the analysis on all the data links of the router, the insertion loss is within the range of 0.13—3.36 dB, and the crosstalk is less than −19.46 dB. The router can meet the need of large-scale optical network-on-chip (ONoC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shacham, K. Bergman and L. P. Carloni, IEEE Transactions on Computers, Analyst 57, 1246 (2015).

    Article  MathSciNet  Google Scholar 

  2. Y.Y. Ye, L. Duan, J. Xu, O.Y. Jin, M.K. Hung and X. Yuan, 3D Optical Networks-on-chip (NoC) for Multiprocessor Systems-on-chip (MPSoC), IEEE International Conference on 3D Systems Integration, 83 (2009).

  3. Y.Y. Xie, W.H. Xu, W.L. Zhao, Y.X. Huang, T.T. Song and M. Guo, Journal of Lightwave Technology 33, 3858 (2015).

    Article  ADS  Google Scholar 

  4. Z. Chen, H. X. Gu, Y. T. Yang, L.Y. Bai and H. Li, IEEE Computer Architecture Letters 13, 5 (2014).

    Article  Google Scholar 

  5. Q. Q. Luo, C. T. Zheng, X. L. Huang, Y. D. Wang and D. M. Zhang, Optical and Quantum Electronics 6, 829 (2014).

    Article  Google Scholar 

  6. C. T. Zheng, Q. Q. Luo, C. S. Ma, D. M. Zhang and Z. B. Li, Optics Communications 322, 214 (2014).

    Article  ADS  Google Scholar 

  7. C. T. Li, C. T. Zheng, Y. Zheng, X. L. Huang, D. M. Zhang and C. S. Ma, Optics Communications 339, 94 (2015).

    Article  ADS  Google Scholar 

  8. L. Yang, H. Jia, Y.C. Zhao and Q.S. Chen, Optics Letters 40, 1129 (2015).

    Article  ADS  Google Scholar 

  9. R.Q. Ji, J. Xu and L. Yang, IEEE Photonics Technology Letters 25, 492 (2013).

    Article  ADS  Google Scholar 

  10. X.F. Tan, M. Yang, L. Zhang, Y.T. Jiang and J.Y. Yang, Journal of Lightwave Technology 30, 368 (2012).

    Article  ADS  Google Scholar 

  11. R. Min, R.Q. Ji, Q.S. Chen, L. Zhang and L. Yang, Journal of Lightwave Technology 30, 3736 (2012).

    Article  ADS  Google Scholar 

  12. L. Zhang, Y.J. Man, X.F. Tan, M. Yang, T. Hu, J.Y. Yang and Y.T. Jiang, Journal of Optical Communications and Networking 6, 879 (2014).

    Article  Google Scholar 

  13. C.T. Zheng, L. Liang, W.L. Ye, D.M. Zhang and C.S. Ma, IEEE Photonics Technology Letters 27, 581 (2015).

    Article  ADS  Google Scholar 

  14. R.Q. Ji, L. Yang, L. Zhang, Y.H. Tian, J.F. Ding, H.T. Chen, Y.Y. Lu, P. Zhou and W.W. Zhu, Optics Express 19, 18945 (2011).

    Article  ADS  Google Scholar 

  15. V.R. Shrestha, H.S. Lee, Y.G. Lee and S.S. Lee, Optics Communications 331, 64 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-tao Zheng  (郑传涛).

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos. 61107021 and 61177027), the Ministry of Education of China (Nos.20110061120052 and 20120061130008), the China Postdoctoral Science Foundation (Nos.20110491299 and 2012T50297), the Science and Technology Department of Jilin Province of China (No.20130522161JH), and the Special Funds of Basic Science and Technology of Jilin University (No.201103076).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, Pp., Li, Ct., Zheng, Wx. et al. Non-blocking four-port optical router based on thermooptic silicon microrings. Optoelectron. Lett. 12, 268–272 (2016). https://doi.org/10.1007/s11801-016-6105-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-016-6105-3

Navigation