Skip to main content
Log in

Effects of transparent MPTMS/Ag/MoO3 structure as anode on the performance of green organic light-emitting diodes

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A transparent 3-mercaptopropyl trimethoxysilane (MPTMS)/Ag/MoO3 composite anode is introduced to fabricate green organic light-emitting diodes (OLEDs). Effects of the composite anode on brightness and operating voltage of OLEDs are researched. By optimizing the thickness of each layer of the MPTMS/Ag/MoO3 structure, the transmittance of MPTMS/Ag (8 nm)/MoO3 (30 nm) reaches over 75% at about 520 nm. The sheet resistance is 3.78 Ω/□, corresponding to this MPTMS/Ag (8 nm)/MoO3 (30 nm) structure. For the OLEDs with the optimized anode, the maximum electroluminescence (EL) current efficiency reaches 4.5 cd/A, and the maximum brightness is 37 036 cd/m2. Moreover, the OLEDs with the optimized anode exhibit a very low operating voltage (2.6 V) for obtaining brightness of 100 cd/m2. We consider that the improved device performance is mainly attributed to the enhanced hole injection resulting from the reduced hole injection barrier height. Our results indicate that employing the MPTMS/Ag/MoO3 as a composite anode can be a simple and promising technique in the fabrication of low-operating voltage and high-brightness OLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darran R Cairns, Richard P. II Witte, Daniel K Sparacin, Suzanne M. Sachsman, David C. Paine, Gregory P. Crawford and R. R. Newton, Applied Physics Letters 76, 1425 (2000).

    Article  ADS  Google Scholar 

  2. S. T. Lee, Z. Q. Gao and L. S. Hung, Applied Physics Letters 75, 1404 (1999).

    Article  ADS  Google Scholar 

  3. Hu Meng, Jianxing Luo, Wei Wang, Zujin Shi, Qiaoli Niu, Lun Dai and Guogang Qin, Advanced Functional Materials 23, 3324 (2013).

    Article  Google Scholar 

  4. Mingjie Zhao, Jianhua Zou, Yueju Su, Ruixia Xu, Jiawei Pang, Lang Wang, Miao Xu, Hong Tao, Lei Wang and Junbiao Peng, ECS Journal of Solid State Science and Technology 2, R190 (2013).

  5. Yuxin Li, Xiujie Hu, Shuyun Zhou, Li Yang, Jun Yan, Chenghua Sun and Ping Chen, Journal of Materials Chemistry C 2, 916 (2014).

    Article  Google Scholar 

  6. LI Xiao-yun, HU Wen-zheng and LIU Guo-rui, Journal of Optoelectronics·Laser 25, 1855 (2014). (in Chinese)

    Google Scholar 

  7. F. Laurent M. Sam, M. Anas Razali, K. D. G. Imalka Jayawardena, Christopher A. Mills, Lynn J. Rozanski, Michail J. Beliatis and S. Ravi P. Silva, Organic Electronics 15, 3492 (2014).

    Article  Google Scholar 

  8. H. M. Zhang and Wallace C. H. Choy, Organic Electronics 9, 964 (2008).

    Article  Google Scholar 

  9. Helena M. Stec and Ross A. Hatton, ACS Applied Materials and Interfaces 4, 6013 (2012).

    Article  Google Scholar 

  10. Chieh-Wei Chen, Ping-Yuan Hsieh, Huo-Hsien Chiang, Chun-Liang Lin, Han-Ming Wu and Chung-Chih Wu, Applied Physics Letters 83, 5127 (2003).

    Article  ADS  Google Scholar 

  11. Minghui Hu, Suguru Noda, Yoshiko Tsuji, Tatsuya Okubo, Yukio Yamaguchi and Hiroshi Komiyama, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 20, 589 (2002).

    Article  ADS  Google Scholar 

  12. M. Kawamura, T. Fudei and Y. Abe, Journal of Physics 417, 012004 (2013).

    Google Scholar 

  13. Zhang Hongmei, Xiao Jianjian, Zeng wenjin and Huang Wei, Displays 35, 171 (2014).

    Article  Google Scholar 

  14. Yongwon Kwon, Yongnam Kim, Hyunkoo Lee, Changhee Lee and Jeonghun Kwak, Organic Electronics 15, 1083 (2014).

    Article  Google Scholar 

  15. D.-T. Nguyen, S. Vedraine, L. Cattin, P. Torchio, M. Morsli, F. Flory and J. C. Bernède, Journal of Applied Physics 112, 063505 (2012).

    Article  ADS  Google Scholar 

  16. Terumasa Fudei, Midori Kawamura, Yoshio Abe and Katsutaka Sasaki, Journal of Nanoscience and Nanotechnology 12, 1188 (2012).

    Article  Google Scholar 

  17. Baolin Tian, Investigation of MoO3 as an Electron Injection Contact and as a Charge Transport Material in Transparent Organic Light Emitting Devices, Canada: University of Waterloo, 2011.

    Google Scholar 

  18. LIN Hui, YU Jun-sheng and ZHANG Wei, Optoelectronics Letters 8, 197 (2012).

    Article  ADS  Google Scholar 

  19. ZHANG Mai-li, ZHANG Fang-hui, ZHANG Wei and ZHANG Si-lu, Journal of Optoelectronics·Laser 24, 888 (2013). (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-tao Hu  (胡俊涛).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.21174036), the National High Technology Research and Development Program of China (863 Program) (No.2012AA011901), and the National Basic Research Program of China (973 Program) (No.2012CB723406).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Jt., Deng, Yf., Mei, Wj. et al. Effects of transparent MPTMS/Ag/MoO3 structure as anode on the performance of green organic light-emitting diodes. Optoelectron. Lett. 11, 333–337 (2015). https://doi.org/10.1007/s11801-015-5125-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-015-5125-8

Keywords

Navigation