Skip to main content
Log in

Effects of Mg-doping concentration on the characteristics of InGaN based solar cells

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A major challenge in GaN based solar cell design is the lack of holes compared with electrons in the multiple quantum wells (MQWs). We find that GaN based MQW photovoltaic devices with five different Mg-doping concentrations of 0 cm−3, 5×1017 cm−3, 2×1018 cm−3, 4×1018 cm−3 and 7×1018 cm−3 in GaN barriers can lead to different hole concentrations in quantum wells (QWs). However, when the Mg-doping concentration is over 1×1018 cm−3, the crystal quality degrades, which results in the reduction of the external quantum efficiency (EQE), short circuit current density and open circuit voltage. As a result, the sample with a slight Mg-doping concentration of 5×1017 cm−3 exhibits the highest conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. David A. and Grundmann M. J., Applied Physics Letters 97, 033501 (2010).

    Article  ADS  Google Scholar 

  2. Nanishi Y., Saito Y. and Yamaguchi T., Japanese Journal of Applied Physics 42, 2549 (2003).

    Article  ADS  Google Scholar 

  3. FU Yun-ying, DAI Li-ping, WANG Shu-ya and ZHANG Guo-jun, Optoelectronics Letters 9, 278 (2013).

    Article  ADS  Google Scholar 

  4. Liu J., Wu Z. C. and Kuang S. P., Optoelectronics and Advanced Materials-Rapid Communications 7, 343 (2013).

    Google Scholar 

  5. Vos A. D., Endoreversible Thermodynamics of Solar Energy Conversion, Oxford: Oxford University Press, 90 (1992).

    Google Scholar 

  6. Jani O., Ferguson I., Honsberg C. and Kurtz S., Applied Physics Letters 91, 132117 (2007).

    Article  ADS  Google Scholar 

  7. K. A. S. M. Ehteshamul Haque, Optoelectronics Letters 9, 177 (2013).

    Article  ADS  Google Scholar 

  8. Lai K. Y., Lin G. J., Lai Y. L., Chen Y. F. and He J. H., Applied Physics Letters 96, 081103 (2010).

    Article  ADS  Google Scholar 

  9. Jampana B. R., Melton A. G., Jamil M. N., Faleev N., Opila R. L., Ferguson I. T. and Honsberg C. B., IEEE Electron Device Letters 31, 32 (2010).

    Article  ADS  Google Scholar 

  10. Zeng S. W., Cai X. M. and Zhang B. P., IEEE Journal of Quantum Electronics 46, 783 (2010).

    Article  ADS  Google Scholar 

  11. Dahal R., Pantha B., Li J., Li J. Y. and Jiang H. X., Applied Physics Letters 98, 263504 (2011).

    Article  ADS  Google Scholar 

  12. Yang C. C., Sheu J. K., Liang X. W., Huang M. S., Lee M. L., Chang K. H., Tu S. J., Huang F. W. and Lai W. C., Applied Physics Letters 97, 021113 (2010).

    Article  ADS  Google Scholar 

  13. Farrell R. M., Neufeld C. J., Cruz S. C., Lang J. R., Iza M., Keller S., Nakamura S., DenBaars S. P., Mishra U. K. and Speck J. S., Applied Physics Letters 98, 201107 (2011).

    Article  ADS  Google Scholar 

  14. Dahal R., Li J., Aryal K., Lin J. Y. and Jiang H. X., Applied Physics Letters 97, 073115 (2010).

    Article  ADS  Google Scholar 

  15. Wu L. W., Chang S. J., Wen T. C., Su Y. K., Chen J. F., Lai W. C., Kuo C. H., Chen C. H. and Sheu J. K., IEEE Journal of Quantum Electronics 38, 446 (2002).

    Article  ADS  Google Scholar 

  16. Cao X. A., Stokes E. B., Sandvik P. M., LeBoeuf S. F., Kretchmer J. and Walker D., IEEE Electron Device Letters 23, 535 (2002).

    Article  ADS  Google Scholar 

  17. Lee Y. J., Lee M. H., Cheng C. M. and Yang C. H., Applied Physics Letters 98, 263504 (2011).

    Article  ADS  Google Scholar 

  18. Jani O., Ferguson I., Honsberg C. and Kurtz S., Applied Physics Letters 91, 132117 (2007).

    Article  ADS  Google Scholar 

  19. Wierer J. J., Koleske D. D. and Lee S. R., Applied Physics Letters 100, 111119 (2012).

    Article  ADS  Google Scholar 

  20. Sang L. W., Takeguchi M., Lee W., Nakayama Y., Lozach M., Sekiguchi T. and Sumiya M., Applied Physics Express 3, 111004 (2010).

    Article  ADS  Google Scholar 

  21. Kuwahara Y., Fujii T., Fujiyama Y., Sugiyama T., Iwaya M., Takeuchi T., Kamiyama S., Akasaki I. and Amano H., Applied Physics Express 3, 111001 (2010).

    Article  ADS  Google Scholar 

  22. Rimada J. C., Hernández L., Connolly J. P. and Barnham K. W. J., Microelectronics Journal 38, 513 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-wang Ge  (葛运旺).

Additional information

This work has been supported by the Key Scientific Research Project of Higher Education of Henan Province (No.15A510033).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G., Wang, B. & Ge, Yw. Effects of Mg-doping concentration on the characteristics of InGaN based solar cells. Optoelectron. Lett. 11, 348–351 (2015). https://doi.org/10.1007/s11801-015-5100-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-015-5100-4

Keywords

Navigation