Skip to main content
Log in

Rabi oscillation generation in the microring resonator system with double-series ring resonators

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

In this paper, a microring resonator (MRR) system using double-series ring resonators is proposed to generate and investigate the Rabi oscillations. The system is made up of silicon-on-insulator and attached to bus waveguide which is used as propagation and oscillation medium. The scattering matrix method is employed to determine the output signal intensity which acts as the input source between two-level Rabi oscillation states, where the increase of Rabi oscillation frequency with time is obtained at the resonant state. The population probability of the excited state is higher and unstable at the optical resonant state due to the nonlinear spontaneous emission process. The enhanced spontaneous emission can be managed by the atom (photon) excitation, which can be useful for atomic related sensors and single-photon source applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chremmos I., Uzunoglu N. K. and Schwelb O., Photonic Microresonator Research and Applications, New York: Springer, 2010.

    Book  Google Scholar 

  2. Sumetsky M., Windeler R. S., Dulashko Y. and Fan X., Optics Express 15, 14376 (2007).

    Article  ADS  Google Scholar 

  3. Rabus D. G., Bian Z. X. and Shakouri A., IEEE Journal of Selected Topics in Quantum Electronics 13, 1249 (2007).

    Article  Google Scholar 

  4. Fietz C. and Shvets G., Optics Letters 32, 1683 (2007).

    Article  ADS  Google Scholar 

  5. White I. M., Gohring J., Sun Y., Yang G., Lacey S. and Fan X., Applied Physics Letters 91, 2411041 (2007).

    Article  Google Scholar 

  6. Glomglome S., Srithanachai I., Teeka C., Mitatha S., Niemcharoen S. and Yupapin P.P., Optics and Laser Technology 44, 1294 (2012).

    Article  ADS  Google Scholar 

  7. Fan G, Li Y, Hu C, Lei L, Zhao D, Li H and Zhen Z., Optics & Laser Technology 63, 62 (2014).

    Article  ADS  Google Scholar 

  8. Nitkowski A., Baeumner A. and Lipson M., Biomedical Optics Express 2, 271 (2011).

    Article  Google Scholar 

  9. Gerry C. and Knight P., Introductory Quantum Optics, Cambridge: Cambridge University Press, 2005.

    Google Scholar 

  10. Fox M., Quantum Optics: An Introduction, New York: Oxford University Press, 2006.

    Google Scholar 

  11. Ma C. S., Wang X. Y., Li D. L. and Qin Z. K., Optics and Laser Technology 39, 1183 (2007).

    Article  ADS  Google Scholar 

  12. Shih C. T. and Chao S., Optics Express 17, 7756 (2009).

    Article  ADS  Google Scholar 

  13. Ciminelli C., Dell'Olio F., Conteduca D., Campanella C. M. and Armenise M. N., Optics and Laser Technology 59, 60 (2014).

    Article  ADS  Google Scholar 

  14. Rukhlenko I. D., Premaratne M. and Agrawal G. P., Optics Letters 35, 55 (2010).

    Article  ADS  Google Scholar 

  15. Eason R. W. and Miller A., Nonlinear Optics in Signal Processing, Springer, 1993.

    Book  Google Scholar 

  16. Yupapin P. P. and Pornsuwancharoen N., IEEE Photonics Technology Letters 21, 404 (2009).

    Article  ADS  Google Scholar 

  17. Phatharaworamet T., Teeka C., Jomtarak R., Mitatha S. and Yupapin P. P., Journal of Lightwave Technology 28, 2804 (2010).

    Article  ADS  Google Scholar 

  18. Heebner J., Grover R., Ibrahim T. and Ibrahim T. A., Optical Microresonators: Theory, Fabrication, and Applications, London: Springer, 2008.

    Google Scholar 

  19. Manjunatha K. B., Dileep R., Umesh G. and Bhat B. R., Optics and Laser Technology 52, 103 (2013).

    Article  ADS  Google Scholar 

  20. Bahadoran M., Ali J. and Yupapin P. P., Applied Optics 52, 2866 (2013).

    Article  ADS  Google Scholar 

  21. Bahadoran M., Ali J. and Yupapin P. P., IEEE Photonics Technology Letters 25, 1470 (2013).

    Article  ADS  Google Scholar 

  22. Maywar D. N., Agrawal G. P. and Nakano Y., Journal of the Optical Society of America B: Optical Physics 18, 1003 (2001).

    Article  ADS  Google Scholar 

  23. Hogan J. M., Johnson D. M. S., Dickerson S., Kovachy T., Sugarbaker A., Chiow S. W., Graham P. W., Kasevich M. A., Saif B., Rajendran S., Bouyer P., Seery B. D., Feinberg L. and Keski-Kuha R., General Relativity and Gravitation 43, 1953 (2011).

    Article  ADS  Google Scholar 

  24. Vahala K. J., Nature 424, 839 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preecha Yupapin.

Additional information

This work has been supported by the UTM’s Flagship Research (Nos.Q.J130000.2426.00G26 and Q.J130000.2509.06H46).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorden, A.F.A., Chaudhary, K., Bahadoran, M. et al. Rabi oscillation generation in the microring resonator system with double-series ring resonators. Optoelectron. Lett. 11, 342–347 (2015). https://doi.org/10.1007/s11801-015-5090-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-015-5090-2

Keywords

Navigation