Advertisement

Optoelectronics Letters

, Volume 11, Issue 5, pp 342–347 | Cite as

Rabi oscillation generation in the microring resonator system with double-series ring resonators

  • Ahmad Fakhrurrazi Ahmad Noorden
  • Kashif Chaudhary
  • Mahdi Bahadoran
  • Muhammad Safwan Aziz
  • Muhammad Arif Jalil
  • Ong Chee Tiong
  • Jalil Ali
  • Preecha YupapinEmail author
Article

Abstract

In this paper, a microring resonator (MRR) system using double-series ring resonators is proposed to generate and investigate the Rabi oscillations. The system is made up of silicon-on-insulator and attached to bus waveguide which is used as propagation and oscillation medium. The scattering matrix method is employed to determine the output signal intensity which acts as the input source between two-level Rabi oscillation states, where the increase of Rabi oscillation frequency with time is obtained at the resonant state. The population probability of the excited state is higher and unstable at the optical resonant state due to the nonlinear spontaneous emission process. The enhanced spontaneous emission can be managed by the atom (photon) excitation, which can be useful for atomic related sensors and single-photon source applications.

Keywords

Spontaneous Emission Coupling Coefficient Rabi Frequency Rabi Oscillation Bright Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chremmos I., Uzunoglu N. K. and Schwelb O., Photonic Microresonator Research and Applications, New York: Springer, 2010.CrossRefGoogle Scholar
  2. [2]
    Sumetsky M., Windeler R. S., Dulashko Y. and Fan X., Optics Express 15, 14376 (2007).CrossRefADSGoogle Scholar
  3. [3]
    Rabus D. G., Bian Z. X. and Shakouri A., IEEE Journal of Selected Topics in Quantum Electronics 13, 1249 (2007).CrossRefGoogle Scholar
  4. [4]
    Fietz C. and Shvets G., Optics Letters 32, 1683 (2007).CrossRefADSGoogle Scholar
  5. [5]
    White I. M., Gohring J., Sun Y., Yang G., Lacey S. and Fan X., Applied Physics Letters 91, 2411041 (2007).CrossRefGoogle Scholar
  6. [6]
    Glomglome S., Srithanachai I., Teeka C., Mitatha S., Niemcharoen S. and Yupapin P.P., Optics and Laser Technology 44, 1294 (2012).CrossRefADSGoogle Scholar
  7. [7]
    Fan G, Li Y, Hu C, Lei L, Zhao D, Li H and Zhen Z., Optics & Laser Technology 63, 62 (2014).CrossRefADSGoogle Scholar
  8. [8]
    Nitkowski A., Baeumner A. and Lipson M., Biomedical Optics Express 2, 271 (2011).CrossRefGoogle Scholar
  9. [9]
    Gerry C. and Knight P., Introductory Quantum Optics, Cambridge: Cambridge University Press, 2005.Google Scholar
  10. [10]
    Fox M., Quantum Optics: An Introduction, New York: Oxford University Press, 2006.Google Scholar
  11. [11]
    Ma C. S., Wang X. Y., Li D. L. and Qin Z. K., Optics and Laser Technology 39, 1183 (2007).CrossRefADSGoogle Scholar
  12. [12]
    Shih C. T. and Chao S., Optics Express 17, 7756 (2009).CrossRefADSGoogle Scholar
  13. [13]
    Ciminelli C., Dell'Olio F., Conteduca D., Campanella C. M. and Armenise M. N., Optics and Laser Technology 59, 60 (2014).CrossRefADSGoogle Scholar
  14. [14]
    Rukhlenko I. D., Premaratne M. and Agrawal G. P., Optics Letters 35, 55 (2010).CrossRefADSGoogle Scholar
  15. [15]
    Eason R. W. and Miller A., Nonlinear Optics in Signal Processing, Springer, 1993.CrossRefGoogle Scholar
  16. [16]
    Yupapin P. P. and Pornsuwancharoen N., IEEE Photonics Technology Letters 21, 404 (2009).CrossRefADSGoogle Scholar
  17. [17]
    Phatharaworamet T., Teeka C., Jomtarak R., Mitatha S. and Yupapin P. P., Journal of Lightwave Technology 28, 2804 (2010).CrossRefADSGoogle Scholar
  18. [18]
    Heebner J., Grover R., Ibrahim T. and Ibrahim T. A., Optical Microresonators: Theory, Fabrication, and Applications, London: Springer, 2008.Google Scholar
  19. [19]
    Manjunatha K. B., Dileep R., Umesh G. and Bhat B. R., Optics and Laser Technology 52, 103 (2013).CrossRefADSGoogle Scholar
  20. [20]
    Bahadoran M., Ali J. and Yupapin P. P., Applied Optics 52, 2866 (2013).CrossRefADSGoogle Scholar
  21. [21]
    Bahadoran M., Ali J. and Yupapin P. P., IEEE Photonics Technology Letters 25, 1470 (2013).CrossRefADSGoogle Scholar
  22. [22]
    Maywar D. N., Agrawal G. P. and Nakano Y., Journal of the Optical Society of America B: Optical Physics 18, 1003 (2001).CrossRefADSGoogle Scholar
  23. [23]
    Hogan J. M., Johnson D. M. S., Dickerson S., Kovachy T., Sugarbaker A., Chiow S. W., Graham P. W., Kasevich M. A., Saif B., Rajendran S., Bouyer P., Seery B. D., Feinberg L. and Keski-Kuha R., General Relativity and Gravitation 43, 1953 (2011).CrossRefADSGoogle Scholar
  24. [24]
    Vahala K. J., Nature 424, 839 (2003).CrossRefADSGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ahmad Fakhrurrazi Ahmad Noorden
    • 1
  • Kashif Chaudhary
    • 1
  • Mahdi Bahadoran
    • 1
  • Muhammad Safwan Aziz
    • 1
  • Muhammad Arif Jalil
    • 1
  • Ong Chee Tiong
    • 2
  • Jalil Ali
    • 1
  • Preecha Yupapin
    • 3
    Email author
  1. 1.Institute of Advance Photonics Science, Nanotechnology Research AllianceUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Department of MathematicsUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Advanced Studies Center, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations