Skip to main content

Advertisement

Log in

A surface plasmon resonance imaging system for the stimulated living cell analysis

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

In this paper, a surface plasmon resonance imaging (SPRI) system for cell analysis is developed for obtaining the surface plasmon resonance (SPR) signal from the interactions between cells and different stimuli. The system is constructed with a red laser light source, a P-polarizer, a glass prism, a 5× objective lens, a charge coupled device (CCD) camera, a gold sensor chip, a polydimethylsiloxane (PDMS) reaction well and a mechanical scanning device. The system is applied to mapping living cells in response to stimuli by characterization of the refractive index (RI) changes. Cell responses to K+ in KCl solutions with concentrations of 5 mmol/L, 20 mmol/L, 50 mmol/L and 100 mmol/L are collected, which indicates that the SPRI method can distinguish the concentration of the stimuli. Furthermore, cell responses to epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) are studied independently. The binding of EGF receptor (EGFR) and EGF is collected as the first signal, and the internal change in cells is recorded as the second signal. The cell response to VEGF is different from that to EGF, which indicates that the SPRI as a label-free, real-time, fast and quantitative method has a potential to distinguish the cell responses to different stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Lin, R. Trouillon, G. Safina and A. G. Ewing, Analytical Chemistry 83, 4369 (2011).

    Article  Google Scholar 

  2. G. J. Ciambrone, V. F. Liu, D. C. Lin, R. P. McGuinness, G. K. Leung and S. Pitchford, Journal of Biomolecular Screening 9, 467 (2004).

    Article  Google Scholar 

  3. K. Johansen, H. Arwin, I. Lundstrom and B. Liedberg, The Review of Scientific Instruments 71, 3530 (2000).

    Article  ADS  Google Scholar 

  4. S. P. Liu, S. Su and G. L. Chen, Journal of Optoelectronics·Laser 24, 608 (2013). (in Chinese)

    Google Scholar 

  5. X. F. Zhang, X. Yan and F. S. Liu, Journal of Optoelectronics·Laser 25, 1220 (2014). (in Chinese)

    Google Scholar 

  6. K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland and M. Bastmeyer, Biophysical Journal 76, 509 (1999).

    Article  ADS  Google Scholar 

  7. A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju and A. L. Plant, BMC Cell Biology 10, 16 (2009).

    Article  Google Scholar 

  8. W. Wang, Y. Yang, S. P. Wang, V. J. Nagaraj, Q. Liu, J. Wu and N. J. Tao, Nature Chemistry 4, 846 (2012).

    Article  ADS  Google Scholar 

  9. Y. Yanasea, T. Hiraguna, S. Kanekoa, H. J. Gouldb, M. W. Greavesc and M. Hide, Biosensors and Bioelectronics 26, 674 (2010).

    Article  Google Scholar 

  10. F. F. Liu, J. Y. Zhang, Y. Deng, D. Q. Wang, Y. Y. Lu and X. L. Yu, Sensors and Actuators B 153, 398 (2011).

    Article  Google Scholar 

  11. T. A. Mir and H. Shinohara, Real-time Monitoring of Cell Response to Drug Stimulation by 2D-SPR Sensor: An Approach to Study Neuronal Differentiation, 14th International Meeting on Chemical Sensors, Germany, 863 (2012).

    Google Scholar 

  12. M. Hide, T. Tsutsui, H. Sato, T. Nishimura, K. Morimoto, S. Yamamoto and K. Yoshizato, Analytical Biochemistry 302, 28 (2002).

    Article  Google Scholar 

  13. A. M. Fontainhas, A. G. Obukhov and M. C. Nowycky, Neuroscience 133, 393 (2005).

    Article  Google Scholar 

  14. H. Shinohara, Novel Cell-based Biosensing with 2D-SPR Imager, 14th International Meeting on Chemical Sensors, Germany, 173 (2012).

    Google Scholar 

  15. A. Wells, The International Journal of Biochemistry & Cell Biology 31, 637 (1999).

    Article  Google Scholar 

  16. N. Ferrara, H. P. Gerber and J. LeCouter, Nature Medicine 9, 669 (2003).

    Article  Google Scholar 

  17. S. Scarano, M. Mascini, A. P. F. Turner and M. Minunni, Biosensors and Bioelectronics 25, 957 (2010).

    Article  Google Scholar 

  18. M. Malmqvist, Current Opinion in Immunology 5, 282 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Chen  (陈兴) or Da-fu Cui  (崔大付).

Additional information

This work has been supported by the National Basic Research Program of China (Nos.2011CB933202 and 2014CB744600), the National High Technology Research and Development Program of China (No.2014AA022303), and the National Natural Science Foundation of China (Nos.61201079, 61372055, 81371711 and 31100820).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ll., Chen, X., Du, Y. et al. A surface plasmon resonance imaging system for the stimulated living cell analysis. Optoelectron. Lett. 11, 77–80 (2015). https://doi.org/10.1007/s11801-015-4171-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-015-4171-6

Keywords

Navigation