Advertisement

Optoelectronics Letters

, Volume 11, Issue 1, pp 77–80 | Cite as

A surface plasmon resonance imaging system for the stimulated living cell analysis

  • Lu-lu Zhang (张璐璐)
  • Xing Chen (陈兴)Email author
  • Yang Du (杜洋)
  • Qian Zhang (张倩)
  • Hui Li (李辉)
  • Jian-hai Sun (孙建海)
  • Da-fu Cui (崔大付)Email author
Article

Abstract

In this paper, a surface plasmon resonance imaging (SPRI) system for cell analysis is developed for obtaining the surface plasmon resonance (SPR) signal from the interactions between cells and different stimuli. The system is constructed with a red laser light source, a P-polarizer, a glass prism, a 5× objective lens, a charge coupled device (CCD) camera, a gold sensor chip, a polydimethylsiloxane (PDMS) reaction well and a mechanical scanning device. The system is applied to mapping living cells in response to stimuli by characterization of the refractive index (RI) changes. Cell responses to K+ in KCl solutions with concentrations of 5 mmol/L, 20 mmol/L, 50 mmol/L and 100 mmol/L are collected, which indicates that the SPRI method can distinguish the concentration of the stimuli. Furthermore, cell responses to epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) are studied independently. The binding of EGF receptor (EGFR) and EGF is collected as the first signal, and the internal change in cells is recorded as the second signal. The cell response to VEGF is different from that to EGF, which indicates that the SPRI as a label-free, real-time, fast and quantitative method has a potential to distinguish the cell responses to different stimuli.

Keywords

Vascular Endothelial Growth Factor Surface Plasmon Resonance PDMS Ethylene Diamine Tetraacetic Acid Ethylene Diamine Tetraacetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Lin, R. Trouillon, G. Safina and A. G. Ewing, Analytical Chemistry 83, 4369 (2011).CrossRefGoogle Scholar
  2. [2]
    G. J. Ciambrone, V. F. Liu, D. C. Lin, R. P. McGuinness, G. K. Leung and S. Pitchford, Journal of Biomolecular Screening 9, 467 (2004).CrossRefGoogle Scholar
  3. [3]
    K. Johansen, H. Arwin, I. Lundstrom and B. Liedberg, The Review of Scientific Instruments 71, 3530 (2000).ADSCrossRefGoogle Scholar
  4. [4]
    S. P. Liu, S. Su and G. L. Chen, Journal of Optoelectronics·Laser 24, 608 (2013). (in Chinese)Google Scholar
  5. [5]
    X. F. Zhang, X. Yan and F. S. Liu, Journal of Optoelectronics·Laser 25, 1220 (2014). (in Chinese)Google Scholar
  6. [6]
    K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland and M. Bastmeyer, Biophysical Journal 76, 509 (1999).ADSCrossRefGoogle Scholar
  7. [7]
    A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju and A. L. Plant, BMC Cell Biology 10, 16 (2009).CrossRefGoogle Scholar
  8. [8]
    W. Wang, Y. Yang, S. P. Wang, V. J. Nagaraj, Q. Liu, J. Wu and N. J. Tao, Nature Chemistry 4, 846 (2012).ADSCrossRefGoogle Scholar
  9. [9]
    Y. Yanasea, T. Hiraguna, S. Kanekoa, H. J. Gouldb, M. W. Greavesc and M. Hide, Biosensors and Bioelectronics 26, 674 (2010).CrossRefGoogle Scholar
  10. [10]
    F. F. Liu, J. Y. Zhang, Y. Deng, D. Q. Wang, Y. Y. Lu and X. L. Yu, Sensors and Actuators B 153, 398 (2011).CrossRefGoogle Scholar
  11. [11]
    T. A. Mir and H. Shinohara, Real-time Monitoring of Cell Response to Drug Stimulation by 2D-SPR Sensor: An Approach to Study Neuronal Differentiation, 14th International Meeting on Chemical Sensors, Germany, 863 (2012).Google Scholar
  12. [12]
    M. Hide, T. Tsutsui, H. Sato, T. Nishimura, K. Morimoto, S. Yamamoto and K. Yoshizato, Analytical Biochemistry 302, 28 (2002).CrossRefGoogle Scholar
  13. [13]
    A. M. Fontainhas, A. G. Obukhov and M. C. Nowycky, Neuroscience 133, 393 (2005).CrossRefGoogle Scholar
  14. [14]
    H. Shinohara, Novel Cell-based Biosensing with 2D-SPR Imager, 14th International Meeting on Chemical Sensors, Germany, 173 (2012).Google Scholar
  15. [15]
    A. Wells, The International Journal of Biochemistry & Cell Biology 31, 637 (1999).CrossRefGoogle Scholar
  16. [16]
    N. Ferrara, H. P. Gerber and J. LeCouter, Nature Medicine 9, 669 (2003).CrossRefGoogle Scholar
  17. [17]
    S. Scarano, M. Mascini, A. P. F. Turner and M. Minunni, Biosensors and Bioelectronics 25, 957 (2010).CrossRefGoogle Scholar
  18. [18]
    M. Malmqvist, Current Opinion in Immunology 5, 282 (1993).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lu-lu Zhang (张璐璐)
    • 1
  • Xing Chen (陈兴)
    • 1
    Email author
  • Yang Du (杜洋)
    • 2
  • Qian Zhang (张倩)
    • 2
  • Hui Li (李辉)
    • 1
  • Jian-hai Sun (孙建海)
    • 1
  • Da-fu Cui (崔大付)
    • 1
    Email author
  1. 1.State Key Laboratory of Transducer Technology, Institute of ElectronicsChinese Academy of SciencesBeijingChina
  2. 2.Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations