Skip to main content
Log in

Spectral spatial coherence of high-power multi-chip LEDs

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We investigate the spatial coherence of the light generated from high-power multi-chip red LEDs by using the van Cittert-Zernike theorem. It is theoretically demonstrated that the light generated from multi-chip LEDs evolves into partially coherent light after propagation, and the spatial coherence is increased with the increase of propagation distance. Moreover, the spatial coherence of the light is found to be closely related to the chip distribution of multi-chip LEDs. The distribution of the spatial coherence of the light is experimentally examined by Young’s double-slit interference. It is found that the experimental results are consistent with the theoretical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Schubert, Light-Emitting Diodes, Cambridge Univ. Press, UK, 2003.

    Google Scholar 

  2. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin and S. L. Rudaz, IEEE J. Sel. Top. Quantum Electron 8, 310 (2002).

    Article  Google Scholar 

  3. J. Kim, S. Somani and Y. Yamamoto, Nonclassical Light from Semiconductor Lasers and LEDs, Spinger, 2001.

  4. S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).

    Article  ADS  Google Scholar 

  5. M. G. Craford, N. Holonyak and F. A. Kish, Sci. Am. 284, 63 (2001).

    Article  Google Scholar 

  6. Y. Narukawa, Opt. Photonics News 15, 24 (2004).

    Article  Google Scholar 

  7. A. Bergh, G. Craford, A. Duggal and R. Haiz, Phys. Today 54, 42 (2001).

    Article  ADS  Google Scholar 

  8. I. Moreno, C-C. Sun and R. Ivanov, Appl. Opt. 48, 1190 (2009).

    Article  ADS  Google Scholar 

  9. Z. Guo, Y. Gao, Y. Lu., Y. Lin, H. Chen, R. Lei, Y. Chen and Z. Chen, Journal of Optoelectronics Laser 22, 992 (2011). (in Chinese)

    Google Scholar 

  10. M. Peeters, G. Verschaffelt, H. Theinpont, S. K. Mandre, I. Fischer and M. Grabherr, Opt. Express 13, 9337 (2005).

    Article  ADS  Google Scholar 

  11. M. Peeters, G. Verschaffelt, J. Speybrouck, H. Theinpont, J. Danckaert, J. Turunen and P. Vahimaa, Opt. Lett. 31, 1178 (2006).

    Article  ADS  Google Scholar 

  12. F. J. Duarte, L. S. Liao and K. M. Vaeth, Opt. Lett. 30, 3072 (2005).

    Article  ADS  Google Scholar 

  13. F. J. Duarte, Opt. Lett. 32, 412 (2007).

    Article  ADS  Google Scholar 

  14. D. S. Mehta, K. Saxena, S. K. Dubey and C. Shakher, Journal of Luminescence 130, 96 (2010).

    Article  ADS  Google Scholar 

  15. M. Born and E. Wolf, Principles of Optics, Cambridge Univ. Press, UK, 1999.

    Google Scholar 

  16. MENG Zhuo, LIANG Yu, YAO Xiao-tian, YAO Hui, LIU Tie-gen and WAN Mu-sen, Journal of Optoelectronics Laser 22, 256 (2011). (in Chinese)

    Google Scholar 

  17. Z. Chen, L. Hua and J. Pu, Prog. Opt. 57, 219 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-xiong Pu  (蒲继雄).

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.60977068 and 61178015).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Gm., Tao, H., Lin, Hc. et al. Spectral spatial coherence of high-power multi-chip LEDs. Optoelectron. Lett. 8, 422–425 (2012). https://doi.org/10.1007/s11801-012-2322-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-012-2322-6

Keywords

Navigation