Skip to main content
Log in

A wavelength division multiplexer based on plastic surfacerelief grating applied to local area communication network

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A plastic surface-relief grating as a wavelength division multiplexer is designed and fabricated with the conventional mould pressing technique using the transmission-type fused quartz phase grating as mask pattern and polycarbonate as basal material. The experiment results show that in an optimizing process, the plastic surface-relief grating has the highest firstorder diffraction efficiency under adequate groove depth and incident angle, and can be used as the best optical path for wavelength division multiplexing (WDM). We also establish the experiment setup for testing the WDM performance of the plastic surface-relief grating based wavelength division multiplexer. The results show that the proposed wavelength division multiplexer has the high-stability temperature characteristics, the low insertion loss of less than 5 dB, the large isolation of greater than 20 dB, the low polarization-dependent loss (PDL) of less than 0.4 dB and the relatively steep pass-band characteristics. It is a WDM device with good performance, which can be applied in short distance communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng Hsiao-Chun, Lu Hai-Han, Li Chung-Yi, Su Heng-Sheng and Hsu Chin-Tai, Optics Express 19, 6749 (2011).

    Article  ADS  Google Scholar 

  2. Tatsuya Sugita, Tomiya Abe, Kouki Hirano and Yuzo Itoh, Applied Optics 44, 2933 (2005).

    Article  ADS  Google Scholar 

  3. Kenji Makino, Takuhiro Nakamura, Takaaki Ishigure and Yasuhiro Koike, Journal of Lightwave Technology 23, 2062 (2005).

    Article  ADS  Google Scholar 

  4. Möllers I., Jäger D., Gaudino R., Nocivelli A., Kragl H., Ziemann O., Weber N., Koonen T., Lezzi C., Bluschke A. and Randel S., IEEE Communications Magazine 47, 58 (2009).

    Article  Google Scholar 

  5. Daniel Felipe Cárdenas Lopez, Antonino Nespola, Stefano Camatel, Silvio Abrate and Roberto Gaudino, Journal of Lightwave Technology 27, 2908 (2009).

    Article  ADS  Google Scholar 

  6. Koike Y. and Koike K., Journal of Polymer Science Part B: Polymer Physics 49, 2 (2011).

    Article  ADS  Google Scholar 

  7. Martínez Juan José, Merayo Noemi and Villafranca Asier, Applied Optics 51, 692 (2012).

    Article  Google Scholar 

  8. F. Saliou, P. Chanclou and F. Laurent, J. Opt. Commun. Netw. 1, C51 (2009).

    Article  Google Scholar 

  9. Renato C. Rabelo, Ohannes Eknoyan and Henry F. Taylor, Applied Optics 50, 562 (2011).

    Article  ADS  Google Scholar 

  10. Cijun Shuai, Chengde Gao and Y. Nie, Applied Optics 49, 4514 (2010).

    Article  ADS  Google Scholar 

  11. Nathan Hagen and Tomasz S. Tkaczyk, Applied Optics 50, 4998 (2011).

    Article  ADS  Google Scholar 

  12. Yuan Luo, Jose Castro and Jennifer K. Barton, Optics Express 18, 19273 (2010).

    Article  ADS  Google Scholar 

  13. A. A. Belokopytov and N. F. Shakirov, Journal of Optical Technology 77, 510 (2010).

    Article  Google Scholar 

  14. Bayanhesshig, Qi Xiang-dong and Tang Yu-guo, Journal of Optoelectronics · Laser 14, 1021 (2003). (in Chinese)

    Google Scholar 

  15. Li Huan-lu and Lou Shu-qin, Journal of Optoelectronics · Laser 21, 1459 (2010). (in Chinese)

    Google Scholar 

  16. Cao Fan, Shou Guo-chu and Hu Yi-hong, Journal of Optoelectronics · Laser 20, 1033 (2009). (in Chinese)

    Google Scholar 

  17. Zhang Jia-shun, An Jun-ming and Zhao Lei, Journal of Optoelectronics · Laser 21, 1431 (2010). (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-qing Lin  (林宝卿).

Additional information

This work has been supported by the Natural Science Foundation of Fujian Province of China (No.2011J01353).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Bq., Zhai, Y. & Zhuang, Qr. A wavelength division multiplexer based on plastic surfacerelief grating applied to local area communication network. Optoelectron. Lett. 8, 344–347 (2012). https://doi.org/10.1007/s11801-012-2262-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-012-2262-1

Keywords

Navigation