Skip to main content
Log in

Practical decoy-state quantum key distribution method considering dark count rate fluctuation

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Considering fluctuant dark count rate in practical quantum key distribution (QKD) system, a new decoy-state method with one vacuum state and one weak decoy state is presented based on a heralded single photon source (HSPS). The method assumes that the dark count rate of each pulse is random and independent. The lower bound of the count rate and the upper bound of the error rate of a single photon state are estimated. The method is applied to the decoy-state QKD system with and without the fluctuation of dark count rate. Because the estimation of the upper bound of a single photon state’s error rate is stricter, the method can obtain better performance than the existing methods under the same condition of implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bennett C. H. and Brassard G., Quantum Cryptography: Public Key Distribution and Coin Tossing, IEEE International Conference on Computer, Systems and Signals Processing, 175 (1984).

  2. Lo H. K. and Chau H. F., Science 283, 2050 (1999).

    Article  ADS  Google Scholar 

  3. Mayers D., Proc. of Crypto. 96, 343 (1996).

    MathSciNet  Google Scholar 

  4. Shor P. W. and Preskill J., Phys. Rev. Lett. 85, 441 (2000).

    Article  ADS  Google Scholar 

  5. Lütkenhaus N., Phys. Rev. A 61, 052304 (2000).

    Article  ADS  Google Scholar 

  6. Tamaki K., Lütkenhaus N. and Koashi M., Phys. Rev. A 80, 032302 (2009).

    Article  ADS  Google Scholar 

  7. Gottesman D., Lo H. K., Lütkenhaus N. and Preskill J., Quantum Inform. Comput. 4, 325 (2004).

    MATH  Google Scholar 

  8. Hwang W. Y., Phys. Rev. Lett. 91, 057901 (2003).

    Article  ADS  Google Scholar 

  9. Lo H. K., Ma X. F. and Chen K., Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  10. Wang X. B., Phys. Rev. Lett. 94, 230503 (2005).

    Article  ADS  Google Scholar 

  11. Wang X. B., Phys. Rev. A 72, 012322 (2005).

    Article  ADS  Google Scholar 

  12. Peng C. Z., Zhang J., Yang D., Gao W. B., Ma H. X., Yin H., Zeng H. P., Yang T., Wang X. B. and Pan J. W., Phys. Rev. Lett. 98, 010505 (2007).

    Article  ADS  Google Scholar 

  13. Adachi Y., Yamamoto T., Koashi M. and Imoto N., Phys. Rev. Lett. 99, 180503 (2007).

    Article  ADS  Google Scholar 

  14. Wang J., Zhang H. F., Wan X., Gao Y., Cui K., Cai W. Q., Chen T. Y., Liang W. and Jin G., Journal of Optoelectronics · Laser 21, 861 (2010). (in Chinese)

    Google Scholar 

  15. Yin Z. Q., Han Z. F., Chen W., Xu F. X., Wu Q. L. and Guo G. C., Chin. Phys. Lett. 25, 3547 (2008).

    Article  ADS  Google Scholar 

  16. Zhou Y. Y., Zhou X. J. and Gao J., Optoelectron. Lett. 6, 396 (2010).

    Article  ADS  Google Scholar 

  17. Zhou Y. Y. and Zhou X. J., Optoelectron. Lett. 7, 389 (2011).

    Article  ADS  Google Scholar 

  18. Hu H. P., Wang J. D., Huang Y. X., Liu S. H. and Lu W., Acta Phys. Sin. 59, 287 (2010). (in Chinese)

    Google Scholar 

  19. Curty M., Moroder T., Ma X. F. and Lütkenhaus N., Phys. Rev. A 79, 032335 (2009).

    Article  ADS  Google Scholar 

  20. Curty M., Ma X. F., Qi B. and Moroder T., Phys. Rev. A 81, 022310 (2010).

    Article  ADS  Google Scholar 

  21. Xu F. X., Wang S., Han Z. F. and Guo G. C., Chin. Phys. B 19, 100312 (2010).

    Article  ADS  Google Scholar 

  22. Wang X. B., Phys. Rev. A 75, 052301 (2007).

    Article  ADS  Google Scholar 

  23. Wang X. B., PENG C. Z. and PAN J. W., Appl. Phys. Lett. 90, 031110 (2007).

    Article  ADS  Google Scholar 

  24. Wang X. B., Peng C. Z., Zhang J., Yang L. and Pan J. W., Phys. Rev. A 77, 042311 (2008).

    ADS  Google Scholar 

  25. Hu J. Z. and Wang X. B., Phys. Rev. A 82, 012331 (2010).

    Article  ADS  Google Scholar 

  26. Gao X., Sun S. H. and Liang L. M., Chin. Phys. Lett. 26, 100307 (2009).

    Article  ADS  Google Scholar 

  27. Zhang S. L., Zou X. B., Li K., Jin C. H. and Guo G. C., Phys. Rev. A 76, 044304 (2007).

    Article  ADS  Google Scholar 

  28. Mi J. L., Wang F. Q., Lin Q. Q., Liang R. S. and Liu S. H., Chin. Phys. B 17, 1178 (2008).

    Article  Google Scholar 

  29. MA X. F. and Lo H. K., New Journal of Physics 10, 073018 (2008).

    Article  ADS  Google Scholar 

  30. Gobby C., Yuan Z. L. and Shields A. J., Phys. Rev. Lett. 84, 3762 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-yuan Zhou  (周媛媛).

Additional information

This work has been supported by the National High Technology Research and Development Program of China (No.2009AAJ128), and the Science Foundation of Naval University of Engineering (No.HGDQNJJ11022).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Yy., Jiang, H. & Wang, Yj. Practical decoy-state quantum key distribution method considering dark count rate fluctuation. Optoelectron. Lett. 8, 384–388 (2012). https://doi.org/10.1007/s11801-012-2026-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-012-2026-y

Keywords

Navigation