Skip to main content
Log in

Thermal stability of luminous YAG: Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A prototype of YAG: Ce (Y3Al5O12) luminous bulk ceramic as a remote phosphor for white LED illumination was fabricated in air through a strategy of silica addition. With increasing the amount of silica in a specific range, the opaque sample turns to be semi-transparent. The precipitation of crystals is verified to be in pure YAG phase by X-ray diffraction (XRD). Beyond the limit of silica amount, the dominant phase of YAG crystal is found to coexist with a small amount of newly-formed Y2Si2O7, Al2O3 and the amorphous phase. The YAG crystals are with a grain size of approximately 2 μm and distribute evenly. The YAG hosts after structural modification via addition of silica result in yellow band emission of 5d → 4f transition peaked around 535 nm as excited by a blue LED, owing to the self-reduction of Ce4+ to Ce3+ even in the absence of reductive atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHOU Long-zao, LIU Hui, AN Bing, WU Feng-shun and WU Yi-ping, Journal of Optoelectronics · Laser 21, 175 (2010). (in Chinese)

    Google Scholar 

  2. S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto and S. Tanabe, Proc. SPIE — Int. Soc. Opt. Eng. 5941, 594111 (2005).

    Google Scholar 

  3. H.-C. Kuo, C.-W. Hung, H.-C. Chen, K.-J. Chen, C.-H. Wang C.-W. Sher, C.-C. Yeh, C.-C. Lin, C.-H. Chen and Y.-J. Cheng, Optics Express 19, A930 (2011).

    Article  ADS  Google Scholar 

  4. Y. Zhu and N. Narendran, Japanese Journal of Applied Physics 49, 100203–1 (2010).

    Article  ADS  Google Scholar 

  5. L. Ming-Te, Y. Shang-Ping, L. Ming-Yao, T. Kuang-Yu, T. Sheng-Chieh, L. Chih-Hsuan, C. Jyh-Chen and S. Ching- Cherng, IEEE Photonics Technology Letters 22, 574 (2010).

    Article  ADS  Google Scholar 

  6. N. Cherepy, J. Kuntz, T. Tillotson, D. Speaks, S. Payne, B. Chai, Y. Porterchapman and S. Derenzo, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 579, 38 (2007).

    Article  ADS  Google Scholar 

  7. E. Mihóková, M. Nikl, J. A. Mareš, A. Beitlerová, A. Vedda, K. Nejezchleb, K. Bla·ek and C. D’Ambrosio, Journal of Luminescence 126, 77 (2007).

    Article  ADS  Google Scholar 

  8. E. Zych and C. Brecher, Journal of Luminescence 90, 89 (2000).

    Article  ADS  Google Scholar 

  9. MA Qing-lei, ZONG Nan, LU Yuan-fu, ZHANG Xiao-fu, LIU Wen-bin, JIANG Ben-xue, FENG Xi-qi, PAN Yu-bai, WANG Bao-shan, BO Yong, PENG Qin-jun, CUI Da-fu and XU Zu-yan, Journal of Optoelectronics · Laser 21, 19 (2010). (in Chinese)

    Google Scholar 

  10. T. Tachiwaki, M. Yoshinaka, K. Hirota, T. Ikegami and O. Yamaguchi, Solid State Communications 119, 603 (2001).

    Article  ADS  Google Scholar 

  11. S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto and S. Yamamoto, Proc. SPIE — Int. Soc. Opt. Eng. 5941, 594112 (2005).

    Google Scholar 

  12. Q. Su, H. B. Liang, T. D. Hu, Y. Tao and T. Liu, Journal of Alloys and Compounds 344, 132 (2002).

    Article  Google Scholar 

  13. Q. H. Zeng, Z. W. Pei, S. B. Wang and Q. Su, Journal of Alloys and Compounds 275, 238 (1998).

    Article  Google Scholar 

  14. W. H. Chao, R. J. Wu and T. B. Wu, Journal of Alloys and Compounds 506, 98 (2010).

    Article  Google Scholar 

  15. P. A. Tanner, F. Lianshe, N. Lixin, C. Bing-Ming and M. G. Brik, Journal of Physics: Condensed Matter 19, 14 (2007).

    Article  Google Scholar 

  16. A. Revaux, G. Dantelle, N. George, R. Seshadri, T. Gacoin and J.-P. Boilot, Nanoscale 3, 2015 (2011).

    Article  ADS  Google Scholar 

  17. H. J. Reyher, N. Hausfeld, M. Pape, J. Baur and J. Schneider, Solid State Communications 110, 345 (1999).

    Article  ADS  Google Scholar 

  18. R. Kasuya, T. Isobe, H. Kuma and J. Katano, J. Phys. Chem. B 109, 22126 (2005).

    Article  Google Scholar 

  19. J. Xu, Y. J. Dong, G. Q. Zhou, G. J. Zhao, F. L. Su, L. B. Su, H. J. Li and J. L. Si, Opt. Mater. 30, 234 (2007).

    Article  ADS  Google Scholar 

  20. Y. Dong, G. Zhou, J. Xu, G. Zhao, F. Su, L. Su, H. Li, J. Si, X. Qian and X. Li, Journal of Crystal Growth 286, 476 (2006).

    Article  ADS  Google Scholar 

  21. Y. Zorenko, T. Zorenko, V. Gorbenko, B. Pavlyk, V. Laguta, M. Nikl, V. Kolobanov and D. Spassky, Radiation Measurements 45, 419 (2010).

    Article  Google Scholar 

  22. W. Zhao, S. Anghel, C. Mancini, D. Amans, G. Boulon, T. Epicier, Y. Shi, X. Q. Feng, Y. B. Pan, V. Chani and A. Yoshikawa, Opt. Mater. 33, 684 (2011).

    Article  ADS  Google Scholar 

  23. P. Zhiwu, S. Qiang and Z. Jiyu, Journal of Alloys and Compounds 198, 51 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Tian  (田华).

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.50872091, 50802062, and 21076161), and the Key Discipline for Materials Physics and Chemistry of Tianjin in China (Nos.10SYSYJC28100, 2006ZD30, and 06YFJMJC0230).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Song, J., Tian, H. et al. Thermal stability of luminous YAG: Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air. Optoelectron. Lett. 8, 201–204 (2012). https://doi.org/10.1007/s11801-012-2004-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-012-2004-4

Keywords

Navigation