Skip to main content
Log in

Optimization and degradation of rubrene/C70 heterojunction solar cells

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Small molecule organic solar cells (OSCs) with the structure of indium tin oxide (ITO)/molybdenum trioxide (MoO3) (5 nm)/rubrene (χ nm)/fullerene (C70) (y nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP) (6 nm)/aluminum (Al) (150 nm) are fabricated. The thickness of active layer for the devices is investigated in details. The results show that the optimum thicknesses of rubrene layer and C70 layer are 30 nm and 25 nm, respectively. The degradation of the device is also investigated. The result indicates that the open-circuit voltage (V oc) does not change, while the short-circuit current density (J sc), fill factor (FF) and power conversion efficiency (PCE) decrease continuously with time. The degradation can be attributed to the oxygen in ambient diffusing and infiltrating into the active materials and reacting with C70 in cells, which can result in the increase of interfacial series resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).

    Article  Google Scholar 

  2. Xin-fang Zhang, Zheng Xu, Su-ling Zhao, Fu-jun Zhang, Yan Li, Chun-yu Wu and Yue-ning Chen, Optoelectronics Letters 4, 257 (2008).

    Article  ADS  Google Scholar 

  3. WU Bing, LI Yan-wu, LIU Peng-yi and HOU Lin-tao, Journal of Optoelectronics Laser 21, 363 (2010). (in Chinese)

    Google Scholar 

  4. TIAN Hui, XU Hao, YANG Li-ying, ZHANG Feng-ling and Inganas Olle, Journal of Optoelectronics · Laser 21, 886 (2010). (in Chinese)

    Google Scholar 

  5. J. C. Bernède, Y. Berredjem, L. Cattin and M. Morsli, Appl. Phys. Lett. 91, 112111 (2007).

    Article  Google Scholar 

  6. S. Sista, M. H. Park, Z. R. Hong, Y. Wu, J. H. Hou, W. L. Kwan, G. Li and Y. Yang, Adv. Mater. 22, 380 (2010).

    Article  Google Scholar 

  7. M. Reyes-Reyes, K. Kim and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).

    Article  ADS  Google Scholar 

  8. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Nguyen, M. Dante and A. J. Heeger, Science 317, 222 (2007).

    Article  ADS  Google Scholar 

  9. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nature Photonics 3, 297 (2009).

    Article  ADS  Google Scholar 

  10. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).

    Article  ADS  Google Scholar 

  11. S. Pfuetzner, J. Meiss, A. Petrich, M. Riede and K. Leo, Appl. Phys. Lett. 94, 223307 (2009).

    Article  ADS  Google Scholar 

  12. X. Xi, W. J. Li, J. Q. Wu, J. J. Ji, Zh. R. Shi and G. H. Li, Sol. Energy Mater. Sol. Cells 94, 2435 (2010).

    Article  Google Scholar 

  13. Q. L. Song, F. Y. Li, H. Yang, H. R. Wu, X. Z. Wang, W. Zhou, J. M. Zhao, X. M. Ding, C. H. Huang and X. Y. Hou, Chem. Phys. Lett. 416, 42 (2005).

    Article  ADS  Google Scholar 

  14. S. Heutz, P. Sullivan, B. M. Sanderson, S. M. Schultes and T.S. Jones, Sol. Energy Mater. Sol. Cells 83, 229 (2004).

    Article  Google Scholar 

  15. H. Neugebauer, C. Brabec, J. C. Hummelen and N. S. Sariciftci, Sol. Energy Mater. Sol. Cells 61, 35 (2000).

    Article  Google Scholar 

  16. J. M. Kroon, M. M. Wienk, W. J. H. Verhees and J. C. Hummelen, Thin Solid Films 403, 223 (2002).

    Article  ADS  Google Scholar 

  17. Md. Khairul Hassan Bhuiyan and Tetsu Mieno, Thin Solid Films 441, 187 (2003).

    Article  ADS  Google Scholar 

  18. M. P. de Jong, D. P. L. Simons, M. A. Reijme, L. J. van IJzendoorn, A. W. Denier van der Gon, M. J. A. de Voigt, H. H. Brongersma and R. W. Gymer, Synth. Met. 110, 1 (2000).

    Article  Google Scholar 

  19. M. Jørgensen, K. Norrman and F. C. Krebs, Sol. Cells 92, 686 (2008).

    Article  Google Scholar 

  20. T. Ameri, G. Dennler, C. Lungenschmied and C. J. Brabec, Energy Environ. Sci. 2, 347 (2009).

    Article  Google Scholar 

  21. E. Reichmanis, H. Katz, C. Kloc and A. Maliakal, Bell Labs Technical Journal 10, 87 (2005).

    Article  Google Scholar 

  22. F. C. Krebs, S. A. Gevorgyan and B. Gholamkhass, Sol. Energy Mater. Sol. Cells 93, 1968 (2009).

    Article  Google Scholar 

  23. M. H. Petersen, S. A. Gevorgyan and F. C. Krebs, Macromolecules 41, 8986 (2008).

    Article  ADS  Google Scholar 

  24. M. Rusu, J. Strotmann, M. Vogel, M. Ch. Lux-Steiner and K. Fostiropoulos, Appl. Phys. Lett. 90, 153511 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-yi Liu  (刘彭义).

Additional information

This work has been supported by the Natural Science Foundation of Guangdong Province of China (No.06025173).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Zg., Liu, Py., Hou, Lt. et al. Optimization and degradation of rubrene/C70 heterojunction solar cells. Optoelectron. Lett. 8, 93–96 (2012). https://doi.org/10.1007/s11801-012-1130-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-012-1130-3

Keywords

Navigation