Advertisement

Optoelectronics Letters

, Volume 8, Issue 3, pp 224–228 | Cite as

Effects of hydrostatic pressure and external electric field on the impurity binding energy in strained GaN/Al x Ga1−x N spherical quantum dots

  • Mu-ren Dalai (达来木仁)
  • Zu-wei Yan (闫祖威)Email author
  • Lei Shi (石磊)
Article

Abstract

The binding energy and Stark effect energy shifts of a shallow donor impurity state in a strained GaN/Al x Ga1−x N spherical finite-potential quantum dot (QD) are calculated using a variational method based on the effective mass approximation. The binding energy is computed as a function of dot size and hydrostatic pressure. The numerical results show that the binding energy of the impurity state increases, attains a maximum value, and then decreases as the QD radius increases for any electric field. Moreover, the binding energy increases with the pressure for any size of dot. The Stark shift of the impurity energy for large dot size is much larger than that for the small dot size, and it is enhanced by the increase of electric field. We compare the binding energy of impurity state with and without strain effects, and the results show that the strain effects enhance the impurity binding energy considerably, especially for the small QD size. We also take the dielectric mismatch into account in our work.

Keywords

Impurity State Stark Shift Effective Mass Approximation Linear Interpolation Method Donor Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. D. Bykhovski, B. L. Gelmont and M. S. Shur, J. Appl. Phys. 81, 6332 (1997).ADSCrossRefGoogle Scholar
  2. [2]
    E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao and S. S. Lau, Appl. Phys. Lett. 71, 2794 (1997).ADSCrossRefGoogle Scholar
  3. [3]
    Y. C. Li and S. W. Gu, Phys. Rev. B 45, 12102 (1992).ADSCrossRefGoogle Scholar
  4. [4]
    Y. C. Li and S. W. Gu, J Phys.: Condens. Matter 4, 135 (1992).ADSCrossRefGoogle Scholar
  5. [5]
    NASHUN Wuritu and GONG Jian, Journal of Optoelectronics Laser 21, 1102 (2010). (in Chinese)Google Scholar
  6. [6]
    C. Bose and C. Chakraborty, Solid-State Electronics 41,1383 (1997).Google Scholar
  7. [7]
    Carlos I. Mendoza, G. J. Vazquez, M. del Castillo-Mussot and H. Spector, Phys. Rev. B 71, 075330 (2005).ADSCrossRefGoogle Scholar
  8. [8]
    Carlos. I. Mendoza, G. J. Vazquez, M. del Castillo-Mussot and Harold N. Spector, Phys. Stat. Sol. C 1, S74 (2004).CrossRefGoogle Scholar
  9. [9]
    C. Dane, H. Akbas, S. Minez and A. Guleroglu, Physica E 41, 278 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    S. H. Wei and A. Zunger, Phys. Rev. B 60, 5404 (1999).ADSCrossRefGoogle Scholar
  11. [11]
    J. M. Wagner and F. Bechstedt, Phys. Rev. B 62, 4526 (2000).ADSCrossRefGoogle Scholar
  12. [12]
    Z. X. Liu, G. H. Li, H. X. Han and Z. P. Wang, Chinese Journal of Semiconductors 15, 163 (1994). (in Chinese)Google Scholar
  13. [13]
    A. M. Elabsy, Physica Scripta 48, 376 (1993).ADSCrossRefGoogle Scholar
  14. [14]
    G. J. Zhao, X. X. Liang and S. L. Ban, Physics Letters A 319, 191 (2003).ADSCrossRefGoogle Scholar
  15. [15]
    S. T. Perez-Merchancano, H. Paredes-Gutierrez and J. Silva-Valencia, J. Phys: Condens. Matter 19, 026225 (2007).ADSCrossRefGoogle Scholar
  16. [16]
    C. X. Xia, F. C. Jiang and S. Y. Wei, Superlattices Microst 43, 285 (2008).ADSCrossRefGoogle Scholar
  17. [17]
    J. L. Zhu and X. Chen, Phys. Rev. B 50, 4497 (1994).ADSCrossRefGoogle Scholar
  18. [18]
    Y. F. Huangfu and Z. W. YAN, Journal of Inner Mongolia University 39, 18 (2008).Google Scholar
  19. [19]
    H. T. Wu, H. L. Wang and L. M. Jiang, Acta Physica Sinica 58, 465 (2009). (in Chinese)Google Scholar
  20. [20]
    Z. Y. Deng, J. K. Guo and T. R. Lai, J. Phys. Condens. Matter 6, 5949 (1994).ADSCrossRefGoogle Scholar
  21. [21]
    E. Sadeghi, Physica E 41, 1319 (2009).ADSCrossRefGoogle Scholar
  22. [22]
    S. Adachi, J. Appl. Phys. 58, R1 (1985).ADSCrossRefGoogle Scholar
  23. [23]
    Z. W. Yan, S. L. Ban and X. X. Liang, Eur. Phys. J. B 35, 41 (2003).ADSCrossRefGoogle Scholar
  24. [24]
    L. Shi and Z. W. Yan, Phys. Stat. Sol. C 8, 42 (2011).CrossRefGoogle Scholar
  25. [25]
    D. Z. Y. Ting and Y. C. Chang, Phys. Rev. B 36, 4359 (1987).ADSCrossRefGoogle Scholar
  26. [26]
    J. M. Wagner and F. Bechstedt, Phys. Rev. B 66, 115202 (2002).ADSCrossRefGoogle Scholar
  27. [27]
    H. Wang, G. A. Farias and V. N. Freire, Phys. Rev. B 60, 5705 (1999).ADSCrossRefGoogle Scholar
  28. [28]
    I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).ADSCrossRefGoogle Scholar
  29. [29]
    A. R. Goni, H. Siegle, K. Syassen, C. Thomsen and J.-M. Wagner, Phys. Rev. B 64, 035205 (2001).ADSCrossRefGoogle Scholar
  30. [30]
    N. E. Christensen and I. Gorczyca, Phys. Rev. B 50, 4397 (1994).ADSCrossRefGoogle Scholar
  31. [31]
    C. Bose and C. Sarkar, Phys. Stat. Sol. B 218, 461 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mu-ren Dalai (达来木仁)
    • 1
  • Zu-wei Yan (闫祖威)
    • 1
    • 2
    Email author
  • Lei Shi (石磊)
    • 1
  1. 1.School of Physics Science and TechnologyInner Mongolia UniversityHohhotChina
  2. 2.College of ScienceInner Mongolia Agricultural UniversityHohhotChina

Personalised recommendations