Skip to main content
Log in

Investigation on bismuth-oxide photonic crystal fiber for optical parametric amplification

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity. This simulation and calculation results show that the bismuth-oxide photonic crystal fiber (Bi-PCF) has near zero dispersion around 1550 nm. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model field distribution are obtained. Compared with the experimental results by SiO2-PCF, it can be seen that the Bi-PCF shows excellent characteristics for the optical parametric amplification (OPA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th Edition, San Diego: Academic Press, 17 (2007).

    Google Scholar 

  2. J. Toulouse, Journal of Lightwave Technology 23, 3625 (2005).

    Article  ADS  Google Scholar 

  3. S. Sudo, T. Hosaka, H. Itoh and K. Okamoto, Electronics Letters 22, 833 (1986).

    Article  Google Scholar 

  4. M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akaska and M. Nishimura, Proc. ECOC/IOOC 2, 115 (1997).

    Google Scholar 

  5. T. Hori, N. Nishizawa, T. Goto and M. Yoshida, Journal of the Optical Society of America B 21, 1969 (2004).

    Article  ADS  Google Scholar 

  6. Xiao-xia Liu, Xiang-jun Xin, Jin-hui Yuan, Xi-qing Liu, Xinzhu Sang and Chong-xiu Yu, Optoelectronics Letters 6, 367 (2010).

    Article  ADS  Google Scholar 

  7. J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang and G. K. Chang, Journal of Lightwave Technology 24, 2851 (2006).

    Article  ADS  Google Scholar 

  8. M. Tang, Y. Gong and P. Shum, IEEE Photon. Technol. Lett. 17, 148 (2005).

    Article  ADS  Google Scholar 

  9. J. Li, A. Berntson and G. Jacobsen, IEEE Photon. Technol. Lett. 20, 691 (2008).

    Article  ADS  Google Scholar 

  10. S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. Schmidt-Langhorst, B. Huettl, C. Schubert and H. G. Weber, IEEE J. Sel. Top. in Quantum Electronics 14, 674 (2008).

    Article  Google Scholar 

  11. Shigeki Watanabe, Journal of Optical and Fiber Communications Research 3, 1 (2005).

    Article  Google Scholar 

  12. M. Hirano, T. Nakanishi, T. Okuno and M. Onishi, IEEE J. Sel. Top. in Quantum Electronics 15, 103 (2009).

    Article  Google Scholar 

  13. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin and G. P. Agrawal, Electronics Letters 39, 838 (2003).

    Article  Google Scholar 

  14. N. Sugimoto, H. Kanbara and S. Fujiwara, Journal of the Optical Society of America B 16, 1904 (1999).

    Article  ADS  Google Scholar 

  15. K. Seki and S. Yamashita, Optics Express 16, 13871 (2008).

    Article  ADS  Google Scholar 

  16. T. Hasegawa and S. Ohara, Proc. Optical Fiber Communication, OThK2 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cang Jin  (金沧).

Additional information

This work has been supported by the “973” Project of China (No.2010CB328300).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C., Rao, L., Yuan, Jh. et al. Investigation on bismuth-oxide photonic crystal fiber for optical parametric amplification. Optoelectron. Lett. 7, 194–197 (2011). https://doi.org/10.1007/s11801-011-1003-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-011-1003-1

Keywords

Navigation