Clinical Research in Cardiology Supplements

, Volume 2, Issue 2, pp 137–143 | Cite as


Selektive Herzfrequenzsenkung als neue Therapieoption
Klinische Pharmakologie


Die Herzfrequenz in Ruhe steht in engem Zusammenhang mit dem allgemeinen und speziell dem kardiovaskulären Mortalitätsrisiko. Eine Reduktion der Mortalität durch kardiovaskulär wirksame Substanzen scheint zumindest teilweise in ihren herzfrequenzsenkenden Eigenschaften begründet zu sein. Sowohl die Pathophysiologie der Angina Pectoris bei koronarer Herzerkrankung als auch das Auftreten einer Herzinsuffizienz bei eingeschränkter linksventrikulärer Pumpfunktion sind eng mit der Ruheherzfrequenz verknüpft. Eine isolierte Herzfrequenzreduktion erscheint daher als interessanter neuer Therapieansatz und ist erstmals durch den selektiven If-Kanalblocker Ivabradin möglich. Ivabradin hemmt die spontane Depolarisation am Sinusknoten und führt so zu einer Reduktion der Herzfrequenz ohne andere kardiale Parameter oder das intrazelluläre cAMP zu verändern und ohne direkte negativ inotrope Wirkung. Erste klinische Studien erlauben einen Einsatz von Ivabradin als Reservemedikament für Patienten mit stabiler Angina Pectoris, die Unverträglichkeit oder Kontraindikationen für β-Blocker aufweisen. Auf Basis ausstehender Studien könnte die Anwendung der Substanz auch auf andere kardiovaskuläre Erkrankungen, wie z. B. die Herzinsuffizienz oder Herzrhythmusstörungen, ausgedehnt werden.


Herzfrequenz If-Kanal Angina Pectoris Ivabradin Sterblichkeit 


Selective reduction of heart rate as a new therapeutic option


The heart rate at rest is closely associated with total and, in particular, cardiovascular mortality. The reduction in mortality due to treatment with cardiovascular drugs seems to be partly linked with their ability to reduce the heart rate. Both the pathophysiology of angina pectoris in coronary heart disease as well as the development of cardiac insufficiency with reduced left ventricular function are closely associated with resting pulse rate. Therefore, a selective reduction in heart rate is viewed as an interesting therapeutic principle. Such a reduction can be achieved with the new, specific If-channel blocker ivabradine. Ivabradine inhibits the spontaneous depolarisation in the sinus node and thereby reduces heart rate. Other cardiac parameters such as intracellular cAMP or the inotropic state are not influenced. Recent clinical studies allow the application of ivabradine as an alternative agent in patients with stable angina pectoris who do not tolerate beta-blockade. Pending ongoing studies, ivabradine might also be useful for other cardiovascular diseases such as heart failure or rhythm disorders.


Heart rate If-channel Angina pectoris Ivabradine Mortality 


  1. 1.
    Levine HJ (1997) Rest heart rate and life expectancy. J Am Coll Cardiol 30: 1104–1106CrossRefPubMedGoogle Scholar
  2. 2.
    Goldberg RJ, Larson M, Levy D (1996) Factors associated with survival to 75 years of age in middle-aged men and women. The Framingham Study. Arch Intern Med 156: 505–509Google Scholar
  3. 3.
    Reunanen A, Karjalainen J, Ristola P et al. (2000) Heart rate and mortality. J Intern Med 247: 231–239CrossRefPubMedGoogle Scholar
  4. 4.
    Kannel WB, Kannel C, Paffenbarger RS, Jr., Cupples LA (1987) Heart rate and cardiovascular mortality: the Framingham Study. Am Heart J 113: 1489–1494CrossRefPubMedGoogle Scholar
  5. 5.
    Palatini P (1999) Elevated heart rate as a predictor of increased cardiovascular morbidity. J Hypertens Suppl 17: S3–10CrossRefGoogle Scholar
  6. 6.
    Wilhelmsen L, Berglund G, Elmfeldt D et al. (1986) The multifactor primary prevention trial in Goteborg, Sweden. Eur Heart J 7: 279–288PubMedGoogle Scholar
  7. 7.
    Diaz A, Bourassa MG, Guertin MC, Tardif JC (2005) Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J 26: 967–974CrossRefPubMedGoogle Scholar
  8. 8.
    Seccareccia F, Pannozzo F, Dima F et al. (2001) Heart rate as a predictor of mortality: the MATISS project. Am J Public Health 91: 1258–1263PubMedGoogle Scholar
  9. 9.
    Fujiura Y, Adachi H, Tsuruta M et al. (2001) Heart rate and mortality in a Japanese general population: an 18-year follow-up study. J Clin Epidemiol 54: 495–500CrossRefPubMedGoogle Scholar
  10. 10.
    Perski A, Olsson G, Landou C et al. (1992) Minimum heart rate and coronary atherosclerosis: independent relations to global severity and rate of progression of angiographic lesions in men with myocardial infarction at a young age. Am Heart J 123: 609–616CrossRefPubMedGoogle Scholar
  11. 11.
    Heidland UE, Strauer BE (2001) Left ventricular muscle mass and elevated heart rate are associated with coronary plaque disruption. Circulation 104: 1477–1482PubMedGoogle Scholar
  12. 12.
    Simonsen S, Ihlen H, Kjekshus JK (1983) Haemodynamic and metabolic effects of timolol (Blocadren) on ischaemic myocardium. Acta Med Scand 213: 393–398PubMedGoogle Scholar
  13. 13.
    Swedberg K, Viquerat C, Rouleau JL et al. (1984) Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol 54: 783–786CrossRefPubMedGoogle Scholar
  14. 14.
    Panina G, Khot UN, Nunziata E, Cody RJ, Binkley PF (1995) Assessment of autonomic tone over a 24-hour period in patients with congestive heart failure: relation between mean heart rate and measures of heart rate variability. Am Heart J 129: 748–753CrossRefPubMedGoogle Scholar
  15. 15.
    Schwinger RH, Bohm M, Koch A, Erdmann E (1992) Force-frequency relation in human heart failure. Circulation 86: 2017–2018Google Scholar
  16. 16.
    Schwinger RH, Bohm M, Schmidt U et al. (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92: 3220–3228PubMedGoogle Scholar
  17. 17.
    Accili EA, Proenza C, Baruscotti M, DiFrancesco D (2002) From funny current to HCN channels: 20 years of excitation. News Physiol Sci 17: 32–37PubMedGoogle Scholar
  18. 18.
    Bois P, Bescond J, Renaudon B, Lenfant J (1996) Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 118: 1051–1057PubMedGoogle Scholar
  19. 19.
    Bucchi A, Baruscotti M, DiFrancesco D (2002) Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J Gen Physiol 120: 1–13CrossRefPubMedGoogle Scholar
  20. 20.
    Tardif JC, Ford I, Tendera M et al. (2005) Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J 26: 2529–2536CrossRefPubMedGoogle Scholar
  21. 21.
    Borer JS, Fox K, Jaillon P, Lerebours G (2003) Antianginal and antiischemic effects of ivabradine, an I(f) inhibitor, in stable angina: a randomized, double-blind, multicentered, placebo-controlled trial. Circulation 107: 817–823CrossRefPubMedGoogle Scholar
  22. 22.
    Camm AJ, Lau CP (2003) Electrophysiological effects of a single intravenous administration of ivabradine (S 16257) in adult patients with normal baseline electrophysiology. Drugs R D 4: 83–89CrossRefPubMedGoogle Scholar
  23. 23.
    Ruzyllo W, Ford IF, Tendera MT, Fox KF (2004) Antianginal and antiischaemic effects of the If current inhibitor ivabradine compared to amlodipine as monotherapies in patients with chronic stable anina. Eur Heart J 25 [Suppl], Abstract 878Google Scholar
  24. 24.
    Fox K, Garcia MA, Ardissino D et al. (2006) Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27: 1341–1381CrossRefPubMedGoogle Scholar
  25. 25.
    Manz M, Reuter M, Lauck G et al. (2003) A single intravenous dose of ivabradine, a novel I(f) inhibitor, lowers heart rate but does not depress left ventricular function in patients with left ventricular dysfunction. Cardiology 100: 149–155CrossRefPubMedGoogle Scholar
  26. 26.
    Jondeau G, Korewicki J, Vasiliauskas D (2004) Effect of ivabradine in patients with left ventricular systolic dysfunction and coronary artery disease. Eur Heart J 25 [Suppl], Abstract 491Google Scholar
  27. 27.
    Mulder P, Barbier S, Chagraoui A et al. (2004) Long-term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 109: 1674–1679CrossRefPubMedGoogle Scholar
  28. 28.
    Fox K, Ferrari R, Tendera M et al. (2006) Rationale and design of a randomized, double-blind, placebo-controlled trial of ivabradine in patients with stable coronary artery disease and left ventricular systolic dysfunction: the morBidity-mortality EvAlUaTion of the I(f) inhibitor ivabradine in patients with coronary disease and left ventricULar dysfunction (BEAUTIFUL) study. Am Heart J 152: 860–866CrossRefPubMedGoogle Scholar
  29. 29.
    Schwinger RH, Bohm M, Erdmann E (1992) Inotropic and lusitropic dysfunction in myocardium from patients with dilated cardiomyopathy. Am Heart J 123: 116–128CrossRefPubMedGoogle Scholar
  30. 30.
    Swedberg K, Kjekshus J, Snapinn S (1999) Long-term survival in severe heart failure in patients treated with enalapril. Ten year follow-up of CONSENSUS I. Eur Heart J 20: 136–139CrossRefPubMedGoogle Scholar
  31. 31.
    DiFrancesco D, Camm JA (2004) Heart rate lowering by specific and selective I(f) current inhibition with ivabradine: a new therapeutic perspective in cardiovascular disease. Drugs 64: 1757–1765PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Medizinische Klinik IIKlinikum Weiden, Lehrkrankenhaus der Universität RegensburgWeiden i.d. OPf.Deutschland
  2. 2.Klinik III für Innere MedizinUniversität zu KölnKölnDeutschland

Personalised recommendations