Skip to main content

Advertisement

Log in

Diagnostik der koronaren Herzkrankheit mittels kardialer Computertomographie

Diagnosis of coronary artery disease using cardiac computed tomography

  • Published:
Clinical Research in Cardiology Supplements Aims and scope

Zusammenfassung

In der Praxis hängt die Behandlung von Patienten mit stabilen anginaverdächtigen Symptomen oder einer fraglichen Ischämie maßgeblich davon ab, ob eine strukturelle Koronarstenose sicher auszuschließen bzw. zu bestätigen und ein Bild der koronaren Plaquelast zu erhalten ist, um die Frage der Risikofaktorenbehandlung zu klären. Dies lässt sich durch die nichtinvasive CT-Angiographie (CTA) mittels Kardio-CT erreichen. Bei Patienten mit einer regelmäßigen, niedrigen Herzfrequenz wird eine robuste Bildqualität erzielt, sofern keine extreme Koronarverkalkung besteht. In zunehmendem Maße gelingt eine diagnostische Bildqualität auch bei Patienten mit einer höheren Herzfrequenz und Arrhythmien. Der sicherlich größte Nachteil der neuen Methode besteht in der Strahlendosis von 7–18 mSv. Die technische Entwicklung lässt aber eine deutliche Senkung der Strahlendosis erwarten, u. a. durch eine Reduktion der Aufnahmezeiten. Bereits jetzt bietet das Verfahren bei geeigneten Patienten eine wichtige diagnostische Möglichkeit im Rahmen der KHK-Abklärung. Hochgradige Koronarstenosen lassen sich mit sehr hoher Sicherheit ausschließen; analog zu den Erfahrungen aus der invasiven Koronarangiographie besteht bei diesen Patienten eine sehr günstige Prognose. Hochgradige Koronarstenosen werden ebenfalls mit hoher Sicherheit erkannt. Intermediären Stenosen können bezüglich ihrer hämodynamischen Bedeutung ähnlich schwer einzuschätzen sein wie bei der invasiven Angiographie. Durch die nichtinvasive Plaqueerkennung ergeben sich aber auch wichtige prognostische Aspekte.

Wenn die Strahlenexposition unproblematisch erscheint, ist die CTA bestens zum Einsatz bei Patienten mit einer niedrigen oder intermediären Vortestwahrscheinlichkeit einer stenosierenden KHK geeignet. Sie vermeidet die akuten Risiken der invasiven Diagnostik, bietet aber erstmals in der Geschichte der Kardiologie ein zuverlässiges Abbild der Koronararterien mit gleichzeitiger Darstellung von Koronarlumen und -wand.

Abstract

In the presence of stable angina-like symptoms or arguable ischemia, patients' treatment depends largely on the secure assessment of a possible fixed coronary stenosis and, for prognostic reasons, coronary plaque burden. On this basis, revascularisation, medical, and other therapies directed towards risk factor control can be initiated. Non-invasive coronary computed tomography angiography (CTA) provides for this information. In patients with regular sinus rhythm who can achieve a relatively low heart rate, image quality is very robust, extensive coronary calcifications being the only exception to this rule. Indeed, owing to technological advances, diagnostic image quality is also increasingly achieved in the presence of higher heart rates and arrhythmias.

Certainly, the greatest drawback of CTA lies in the associated radiation exposure of 7–18 mSv. However, future developments are expected to drastically reduce radiation dose, in part through further shortenings of image acquisition time. Today, CTA represents a valuable diagnostic modality in selected patients with suspected stenotic coronary artery disease (CAD). Severe stenoses can be ruled out with a high degree of certainty, and patients with a favourable prognosis can be identified. Although in analogy to invasive angiography, intermediate stenoses are sometimes difficult to classify regarding their potential hemodynamic relevance, assessment of the coronary arterial wall by CTA may provide for important additional prognostic information.

In patients for whom the radiation exposure appears acceptable, CTA is very well suited to be used in the setting of a low to moderate pretest probability of CAD. CTA avoids the acute risks of the invasive procedure. For the first time in the history of cardiology, a reliable non-invasive visualisation of the coronary lumen and the coronary wall is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Jensen LO, Thayssen P, Mintz GS et al (2007) Intravascular ultrasound assessment of remodelling and reference segment plaque burden in type-2 diabetic patients. Eur Heart J 28:1759–1764

    Article  PubMed  Google Scholar 

  2. Ferro G, Duilio C, Spinelli L et al (1995) Relationship between diastolic perfusion pressure time and coronary artery stenosis during stressinduced myocardial ischemia. Circulation 92:342–347

    PubMed  CAS  Google Scholar 

  3. O'Rourke MF, Hashimoto J (2007) Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 50:1–13

    Article  PubMed  Google Scholar 

  4. Möhlenkamp S, Hort W, Ge J, Erbel R (2002) Update on myocardial bridging. Circulation 106:2616–2622

    Article  PubMed  Google Scholar 

  5. Little WC, Constantinescu M, Applegate RJ, et al (1988) Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78:1157–1166

    PubMed  CAS  Google Scholar 

  6. Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. Circulation 92:2333–2342

    PubMed  CAS  Google Scholar 

  7. Proudfit WL, Bruschke VG, Sones FM Jr. (1980) Clinical course of patients with normal or slightly or moderately abnormal coronary arteriograms: 10-year follow-up of 521 patients. Circulation 62:712–717

    PubMed  CAS  Google Scholar 

  8. Emond M, Mock MB, Davis KB et al (1994) Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation 90:2645–2657

    PubMed  CAS  Google Scholar 

  9. Schmermund A, Schwartz RS, Adamzik M et al (2001) Coronary atherosclerosis in unheralded sudden coronary death under age fifty: histopathologic comparison with “healthy” subjects dying out of hospital. Atherosclerosis 155:499–508

    Article  PubMed  CAS  Google Scholar 

  10. Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086

    Article  PubMed  Google Scholar 

  11. Anagnostopoulos C, Davies G, Flint J, et al; British Cardiac Society; British Nuclear Cardiology Society; British Nuclear Medicine Society (2005) Setting up a myocardial perfusion scintigraphy service: Clinical and business aspects. Heart 91(Suppl IV):iv6–iv14

    Article  PubMed  Google Scholar 

  12. Hunold P, Vogt FM, Schmermund A et al (2003) Radiation exposure during cardiac computed tomography – effective doses of multidetector-row computed tomography and electron-beam tomography. Radiology 226:145–152

    Article  PubMed  Google Scholar 

  13. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  14. Coles DR, Smail MA, Negus IS et al (2006) Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 47:1840–1845

    Article  PubMed  Google Scholar 

  15. Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323

    Article  PubMed  CAS  Google Scholar 

  16. Zanzonico P, Rothenberg LN, Strauss HW (2006) Radiation exposure of computed tomography and direct intracoronary angiography: risk has its reward. J Am Coll Cardiol 47:1846–1849

    Article  PubMed  Google Scholar 

  17. McCollough CH, Primak AN, Saba O et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243:775–784

    PubMed  Google Scholar 

  18. Haberl R, Becker A, Leber A et al (2001) Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1764 patients. J Am Coll Cardiol 37:451–457

    Article  PubMed  CAS  Google Scholar 

  19. Budoff MJ, Diamond GA, Raggi P et al (2002) Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 105:1791–1796

    Article  PubMed  Google Scholar 

  20. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92:2157–2162

    PubMed  CAS  Google Scholar 

  21. Schmermund A, Denktas AE, Rumberger JA et al (1999) Independent and incremental value of coronary artery calcium for predicting the extent of angiographic coronary artery disease: comparison with cardiac risk factors and radionuclide perfusion imaging. J Am Coll Cardiol 34:777–786

    Article  PubMed  CAS  Google Scholar 

  22. Greenland P, Bonow RO, Brundage BH et al; American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography); Society of Atherosclerosis Imaging and Prevention; Society of Cardiovascular Computed Tomography (2007) ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation 115: 402–426

    Article  PubMed  Google Scholar 

  23. Schmermund A, Baumgart D, Sack S et al (2000) Assessment of coronary calcification by electron-beam computed tomography in symptomatic patients with normal, abnormal, or equivocal exercise stress test. Eur Heart J 21:1674–1682

    Article  PubMed  CAS  Google Scholar 

  24. Simon A, Chironi G, Levenson J (2006) Performance of subclinical arterial disease detection as a screening test for coronary heart disease. Hypertension 48:392–396

    Article  PubMed  CAS  Google Scholar 

  25. Budoff MJ, Shaw LJ, Liu ST et al (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25 253 patients. J Am Coll Cardiol 49:1860–1870

    Article  PubMed  Google Scholar 

  26. Graham I, Atar D, Borch-Johnson K et al (2007) European guidelines on cardiovascular prevention in clinical practice: full text. Fourth Joint Task Force of the European Society and other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur J Cardiovasc Prev Rehab 14(Suppl 2):S1–S113

    Article  Google Scholar 

  27. Budoff MJ, Achenbach S, Blumenthal RS et al (2006) American Heart Association Committee on Cardiovascular Imaging and Intervention; American Heart Association Council on Cardiovascular Radiology and Intervention; American Heart Association Committee on Cardiac Imaging, Council on Clinical Cardiology. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 114:1761–1791

    Article  PubMed  Google Scholar 

  28. Schmermund A, Möhlenkamp S, Stang A et al, for the Heinz Nixdorf Recall Study Investigative Group (2002) Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: Rationale and design of the Heinz Nixdorf Recall study. Am Heart J 144:212–218

    Article  PubMed  Google Scholar 

  29. Erbel R, Möhlenkamp S, Lehmann N et al, on behalf of the Heinz Nixdorf Recall Study Investigative Group (2007) Sex related cardiovascular risk stratification based on quantification of atherosclerosis and inflammation. Atherosclerosis, in print; e-publication ahead of print

  30. Schmermund A, Erbel R (2005) Noninvasive computed tomographic coronary angiography: the end of the beginning. Eur Heart J 26:1451–1453

    Article  PubMed  Google Scholar 

  31. Hamon M, Biondi-Zoccai GGL, Malagutti P et al (2006) Diagnostic performance of multislice spiral computer tomography of coronary arteries as compared with conventional invasive coronary angiography. A meta-analysis. J Am Coll Cardiol 48:1896–1910

    Article  PubMed  Google Scholar 

  32. Mahnken AH, Mühlenbruch G, Dohmen G, Kelm M, Wildberger JE, Günther RW (2007) Aktueller Stand der MSCT-Angiografie der Koronararterien. Dtsch Arztebl 104(31–32):A2201–A2207

    Google Scholar 

  33. Achenbach S, Ropers D, Kuettner A et al (2006) Contrast-enhanced coronary artery visualization by dualsource computed tomography – initial experience. Eur J Radiol 57:331–335

    Article  PubMed  Google Scholar 

  34. Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery. American Heart Association. Circulation 51(4 Suppl):5–40

    PubMed  CAS  Google Scholar 

  35. Baumgart D, Schmermund A, Görge G et al (1997) Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis. J Am Coll Cardiol 30:57–64

    Article  PubMed  CAS  Google Scholar 

  36. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747

    Article  PubMed  Google Scholar 

  37. Weustink AC, Meijboom WB, Mollet NR et al (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50:786–794

    Article  PubMed  Google Scholar 

  38. Leber A, Johnson T, Becker A et al (2007) Diagnostic accuracy of dual-source multi-slice CT coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360

    Article  PubMed  Google Scholar 

  39. Heuschmid M, Burgstahler C, Reimann A et al (2007) Usefulness of non-invasive cardiac imaging using dual-source computed tomography in an unselected population with high prevalence of coronary artery disease. Am J Cardiol 100:587–592

    Article  PubMed  Google Scholar 

  40. Schlosser T, Mohrs OK, Magedanz A et al (2007) Noninvasive coronary angiography using 64-detector-row computed tomography in patients with a low to moderate pretest probability of significant coronary artery disease. Acta Radiol 48:300–307

    Article  PubMed  CAS  Google Scholar 

  41. Ghostine S, Caussin C, Daoud B et al (2006) Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol 48:1929–1934

    Article  PubMed  Google Scholar 

  42. Andreini D, Pontone G, Pepi M et al (2007) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol 49:2044–2250

    Article  PubMed  Google Scholar 

  43. Russo V, Gostoli V, Lovato L et al (2006) Clinical value of multidetector CT coronary angiography as a preoperative screening test before noncoronary cardiac surgery. [Epub ahead of print]

  44. Scheffel H, Leschka S, Plass A et al (2007) Accuracy of 64-slice computed tomography for the preoperative detection of coronary artery disease in patients with chronic aortic regurgitation. Am J Cardiol 100:701–706

    Article  PubMed  Google Scholar 

  45. Pundziute G, Schuijf JD, Jukema JW et al (2007) Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol 49:62–70

    Article  PubMed  Google Scholar 

  46. Gilard M, Le Gal G, Cornily JC et al (2007) Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomographic findings. A prospective management outcome study. Arch Intern Med 167:1686–1689

    Article  PubMed  Google Scholar 

  47. Min JK, Shaw LJ, Devereux RB et al (2007) Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 50:1161–1770

    Article  PubMed  Google Scholar 

  48. Hoffmann U, Nagurney JT, Moselewski F et al (2006) Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation 114:2251–2260

    Article  PubMed  Google Scholar 

  49. Goldstein JA, Gallagher MJ, O'Neill WW et al (2007) A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 49:863–871

    Article  PubMed  Google Scholar 

  50. Rubinshtein R, Halon DA, Gaspar T et al (2007) Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation 115:1762–1768

    Article  PubMed  Google Scholar 

  51. Achenbach S, Moselewski F, Ropers D et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109:14–17

    Article  PubMed  Google Scholar 

  52. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography. A comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  53. Hoffmann U, Moselewski F, Nieman K et al (2006) Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 47:1655–1662

    Article  PubMed  Google Scholar 

  54. Leber AW, Becker A, Knez A et al (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system. A comparative study using intravascular ultrasound. J Am Coll Cardiol 47:672–677

    Article  PubMed  Google Scholar 

  55. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Prevalence of noncalcified coronary plaques by 64-slice computed tomography in patients with an intermediate risk for significant coronary artery disease. J Am Coll Cardiol 48:312–318

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schmermund FESC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmermund, A., Magedanz, A., Gufler, H. et al. Diagnostik der koronaren Herzkrankheit mittels kardialer Computertomographie. Clin Res Cardiol Suppl 2, V37–V48 (2007). https://doi.org/10.1007/s11789-007-0023-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11789-007-0023-7

Schlüsselwörter

Key words

Navigation