Skip to main content
Log in

Rolle des L-Arginin/NO-Stoffwechselweges im akuten Nierenversagen

Role of the L-arginine/NO-pathway in acute renal failure

  • Published:
Clinical Research in Cardiology Supplements Aims and scope

Summary

Regulation of renal hemodynamics – in particular intraglomerluar hemodynamics – is closely related to the L-arginine/NO-pathway. Almost all forms of acute renal failure (ARF) are characterized by a reduction in renal plasma flow (RPF) and increased renal vascular resistance. NO, metabolized from L-arginine, is capable of improving renal function due to its vasorelaxing properties in almost all models of ARF, whereas unselective inhibition of nitric oxide synthase (NOS) generally exerts contrary effects. Increased tubular generation of oxygen radicals in the early course of ischemic ARF indicates increased oxidative stress. Simultaneously regulatory changes in expression of iNOS (inducible NOS) and eNOS (endothelial NOS) are observed. Apart from the positive functional effects with L-arginine supplementation a remarkable reduction in the formation of oxygen radicals and reduced overexpression of iNOS are observed. This is important, because in ischemic ARF increased expression of iNOS is accompanied by increased formation of oxygen radicals and peroxynitrite. Both substances are highly reactive and exert many cytotoxic effects. eNOS-derived NO probably plays such an important role in maintaining and improving renal and intraglomerular hemodynamics that negative effects from iNOS-derived NO are overcome. The roles of NOS are different for different types of NOS and also depend on the time course of ARF. Future management strategies should focus on the interplay between antioxidants and NO regulators and the correlation of reactive oxygen species and NO.

Zusammenfassung

Die Regulation der renalen Hämodynamik – insbesondere der intraglomerulären Hämodynamik – ist eng verbunden mit dem L-Arginin-/NO-Stoffwechselweg. Fast alle Formen des akuten Nierenversagens (ANV) sind in hämodynamischer Hinsicht durch eine Reduktion des renalen Plasmaflusses (RPF) und einen Anstieg des renalen Gefäßwiderstands gekennzeichnet. Aus L-Arginin gebildetes NO ist aufgrund seiner vasodilatierenden Eigenschaften in der Lage, die Nierenfunktion im ANV zu verbessern, während eine unselektive Hemmung der NO-Synthase (NOS) in der Regel zu gegensinnigen Effekten führt. Die vermehrte tubuläre Bildung von Sauerstoffradikalen im frühen Verlauf des ischämischen ANV weist auf gesteigerten oxidativen Stress hin. Gleichzeitig kommt es zu regulatorischen Veränderungen der Expression für iNOS (induzierbare NOS) und eNOS (endotheliale NOS). Nach Substitution von L-Arginin beobachtet man neben den positiven funktionellen Effekten auf die Nierenfunktion eine verminderte Bildung von Sauerstoffradikalen und eine deutlich schwächere Überexpression für iNOS. Dies ist sehr bedeutend, da im ischämischen ANV die gesteigerte Expression von iNOS begleitet ist von einer deutlich höheren Bildung von Sauerstoffradikalen und Peroxynitrit. Beide Verbindungen sind hochreaktiv und haben eine ganze Reihe zytotoxischer Effekte. Wahrscheinlich spielt das aus eNOS freigesetzte NO eine so große Rolle bei der Aufrechterhaltung bzw. Verbesserung der renalen und intraglomerulären Hämodynamik, dass mögliche negative Effekte von aus iNOS gebildetem NO mehr als kompensiert werden.

Die pathophysiologischen Implikationen und Bedeutungen der verschiedenen NOS sind unterschiedlich für die verschiedenen Subtypen und hängen auch vom zeitlichen Verlauf des ANV ab. Zukünftige Behandlungsstrategien sollten u. a. die Zusammenhänge zwischen Antioxidanzien und NO-Regulatoren sowie das Wechselspiel zwischen reaktiven Sauerstoffmetaboliten und NO berücksichtigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Boger RH, Bode-Boger SM (2001) The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol 41:79–99

    Article  PubMed  CAS  Google Scholar 

  2. Brodsky SV, Yamamoto T, Tada T, Kim B, Chen J, Kajiya F, Goligorsky MS (2002) Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282(6):F1140–1149

    PubMed  CAS  Google Scholar 

  3. Cherla G, Jaimes E (2004) Role of Larginine in the pathogenesis and treatment of renal disease. J Nutr 134(Suppl 10):2801–2806

    Google Scholar 

  4. Chintala MS, Chiu PJ, Vemulapalli S, Watkins RW, Sybertz EJ (1993) Inhibition of endothelial derived relaxing factor (EDRF) aggravates ischemic acute renal failure in anesthetized rats. Naunyn Schmiedebergs Arch Pharmacol 348(3):305–310

    Article  PubMed  CAS  Google Scholar 

  5. Conger JD, Robinette JB, Guggenheim SJ (1981) Effect of acetylcholine on the early phase of reversible norepinephrine-induced acute renal failure. Kid Int 19(3):399–409

    CAS  Google Scholar 

  6. Conger J, Robinette J, Villar A, Raij L, Shultz P (1995) Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasodilators in postischemic acute renal failure in rats. J Clin Invest 96(1):631–638

    PubMed  CAS  Google Scholar 

  7. Conger JD, Robinette JB, Schrier RW (1988) Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure. J Clin Invest 82(2):532–537

    PubMed  CAS  Google Scholar 

  8. Conti M, Eschwege P, Ahmed M, Paradis V, Droupy S, Loric S, Bedossa P, Charpentier B, Legrand A, Benoit G (2000) Antioxidant enzymatic activities and renal warm ischemia: correlation with the duration of ischemia. Transplant Proc 32(8):2740–2741

    Article  PubMed  CAS  Google Scholar 

  9. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  PubMed  CAS  Google Scholar 

  10. Goligorsky MS, Brodsky SV, Noiri E (2004) NO bioavailability, endothelial dys-function, and acute renal failure: new insights into pathophysiology. Semin Nephrol 24(4):316–323

    Article  PubMed  CAS  Google Scholar 

  11. Goligorsky MS, Noiri E (1999) Duality of nitric oxide in acute renal injury. Semin Nephrol 19(3):263–271

    PubMed  CAS  Google Scholar 

  12. Goligorsky MS, Brodsky SV, Noiri E (2002) Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int 61(3):855–861

    Article  PubMed  CAS  Google Scholar 

  13. Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100(9):2153–2157

    PubMed  CAS  Google Scholar 

  14. Ichihara A, Navara LG (1999) Neuronal NOS contributes to biphasic autoregulatory response during enhanced TGF activity. Am J Physiol 277(1 Pt 2):F113–120

    PubMed  CAS  Google Scholar 

  15. Kone B (2004) Nitric oxide synthesis in the kidney: isoforms, biosynthesis, and functions in health. Semin Nephrol 24(4):299–315

    Article  PubMed  CAS  Google Scholar 

  16. Lancaster J (1992) Nitric oxide in cells. Am Scientist 80:248–259

    Google Scholar 

  17. Ling H, Gengaro PE, Edelstein CL, Martin PY, Wangsiripaisan A, Nemenoff R, Schrier RW (1998) Effect of hypoxia on proximal tubules isolated from nitric oxide synthase knockout mice. Kidney Int 53(6):1642–1646

    Article  PubMed  CAS  Google Scholar 

  18. Lopau K, Kleinert D, Erler J, Schramm L, Heidbreder E, Wanner C (2000) Tacrolimus in acute renal failure: does L-arginine infusion prevent changes in renal hemodynamics? Transplant Int (13)436–442

    Google Scholar 

  19. Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32(1):21–309

    Article  PubMed  CAS  Google Scholar 

  20. Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, Brodsky S, Goligorsky MS (2001) Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol 281(5):F948–957

    PubMed  CAS  Google Scholar 

  21. Noiri E, Peresleni T, Miller F, Goligorsky MS (1996) In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest. 97(10):2377–2383

    Article  PubMed  CAS  Google Scholar 

  22. Schneider R, Raff U, Vornberger N, Schmidt M, Freund R, Reber M, Schramm L, Gambaryan S, Wanner C, Schmidt HHHW, Galle J (2003) LArginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats. Kidney International 64 (1):216–225

    Article  PubMed  CAS  Google Scholar 

  23. Schor N (2002) Acute renal failure and the sepsis syndrome. Kidney Int 61(2):764–776

    Article  PubMed  Google Scholar 

  24. Schramm L, Heidbreder E, Kartenbender K, Schmitt A, Zimmermann J, Ling H, Heidland A (1994) Role of Larginine-derived NO in ischemic acute renal failure in the rat. Ren Fail 16:555–569

    PubMed  CAS  Google Scholar 

  25. Schramm L, Heidbreder E, Zimmermann J, Lopau K, Wanner C (1996) Acute renal failure: influence of nitric oxide on renal function. J Nephrol 9:1–8

    Google Scholar 

  26. Schramm L, La M, Heidbreder E, Hecker M, Beckman J, Lopau K, Zimmermann J, Reiners C, Rendl J, Winderl S, Wanner C, Schmidt HHHW (2002) L-arginine deficiency and supplementation in experimental acute renal failure and in human kidney transplantation. Kidney International 61:1423–1432

    Article  PubMed  CAS  Google Scholar 

  27. Schramm L, Heidbreder E, Lopau K, Schaar J, De Cicco D, Götz R, Heidland A (1994) Toxic acute renal failure in the rat: Effects of L-arginine and N-monomethyl-L-arginine on renal function. Nephrol Dial Transplant 9S4:88–93

    PubMed  Google Scholar 

  28. Schramm L, Weierich T, Heidbreder E, Zimmermann J, Netzer K, Wanner C (2005) Endotoxin-induced acute renal failure in the rat: Effects of L-arginine and nitric oxide synthase inhibition on renal function. J Nephrol 18:374–381

    PubMed  CAS  Google Scholar 

  29. Schwartz D, Blum M, Peer G, Wollman Y, Maree A, Serban I, Grosskopf I, Cabili S, Levo Y, Iaina A (1994) Role of nitric oxide (EDRF) in radiocontrast acute renal failure in rats. Am J Physio 267(3 Pt 2):F374–379

    CAS  Google Scholar 

  30. Snyder S, Bredt D (1992) Stickstoffmonoxid – Regulator biologischer Signale. Spektrum der Wissenschaft 7

  31. Tome LA, Yu L, de Castro I, Campos SB, Seguro AC (1999) Beneficial and harmful effects of L-arginine on renal ischaemia. Nephrol Dial Transplant 14(5):1139–1145

    Article  PubMed  CAS  Google Scholar 

  32. Valdivielso JM, Lopez-Novoa JM, Eleno N, Perez Barriocanal F (2000) Role of glomerular nitric oxide in glycerol-induced acute renal failure. Can J Physiol Pharmacol 78(6):476–482

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Schramm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, L., Schneider, R., Zimmermann, J. et al. Rolle des L-Arginin/NO-Stoffwechselweges im akuten Nierenversagen. Clin Res Cardiol Suppl 2 (Suppl 1), S67–S74 (2007). https://doi.org/10.1007/s11789-006-0041-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11789-006-0041-x

Key words

Schlüsselwörter

Navigation