Skip to main content

An Unexpected Boolean Connective


We consider a 2-valued non-deterministic connective \({\wedge \!\!\!\!\!\vee }\) defined by the table resulting from the entry-wise union of the tables of conjunction and disjunction. Being half conjunction and half disjunction we named it platypus. The value of \({\wedge \!\!\!\!\!\vee }\) is not completely determined by the input, contrasting with usual notion of Boolean connective. We call non-deterministic Boolean connective any connective based on multi-functions over the Boolean set. In this way, non-determinism allows for an extended notion of truth-functional connective. Unexpectedly, this very simple connective and the logic it defines, illustrate various key advantages in working with generalized notions of semantics (by incorporating non-determinism), calculi (by allowing multiple-conclusion rules) and even of logic (moving from Tarskian to Scottian consequence relations). We show that the associated logic cannot be characterized by any finite set of finite matrices, whereas with non-determinism two values suffice. Furthermore, this logic is not finitely axiomatizable using single-conclusion rules, however we provide a very simple analytic multiple-conclusion axiomatization using only two rules. Finally, deciding the associated multiple-conclusion logic is \(\mathbf {coNP}\)-complete, but deciding its single-conclusion fragment is in \({\mathbf {P}}\).

This is a preview of subscription content, access via your institution.


  1. In this paper exclude the possibility of a multi-function outputting the empty set however there are situations where this option is desirable as we mention in the end of Sect. 3.

  2. I thank Carlos Caleiro for suggesting platypus and thus steering me away from using such boring alternatives.

  3. This notion is usually presented over Tarskian consequence relations. In such setting, due to the asymmetry in the very notion of logic, the two notions are not symmetric. We will not enter in details here but just state that for positive logics \(\vartriangleright \) where we have that \(\vartriangleright \) is left-(right-)inclusion logic iff \(\vdash _\vartriangleright \) is. We point to [9, 12] for more details.

  4. Rules with empty set of conclusion discontinue the branch of the node where it is applied. We have that \(\Gamma \vartriangleright _R \Delta \) whenever there is a R-derivation departing from \(\Gamma \) where the leaf of each non discontinued branch must be a formula in \(\Delta \).

  5. Using \(\mathbf{2}^\omega \approx \wp ({{\mathbb {N}}})\approx \{({{\mathbb {N}}},1)\}\cup \{(0,X):X\subsetneq {{\mathbb {N}}}\}\).


  1. Anantharaman, S., Narendran, P., Rusinowitch M.: Closure properties and decision problems of dag automata. Inf. Process. Lett. 94(5), 231–240 (2005)

  2. Avron, A., Ben-Naim, J., Konikowska, B.: Cut-free ordinary sequent calculi for logics having generalized finite-valued semantics. Logica Universalis 1(1), 41–70 (2007)

    MathSciNet  Article  Google Scholar 

  3. Avron, A., Konikowska, B.: Proof systems for reasoning about computation errors. Stud. Logica 91(2), 273–293 (2009)

    MathSciNet  Article  Google Scholar 

  4. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. J. Logic Comput. 15(3), 241–261 (2005)

    MathSciNet  Article  Google Scholar 

  5. Avron, A., Zamansky, A.: Non-deterministic semantics for logical systems. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 16, pp. 227–304. Springer, Berlin (2011)

    Chapter  Google Scholar 

  6. Baaz, M., Lahav, O., Zamansky, A.: Finite-valued semantics for canonical labelled calculi. J. Autom. Reason. 51(4), 401–430 (2013)

    MathSciNet  Article  Google Scholar 

  7. Beyersdorff, O., Meier, A., Vollmer, M.: The complexity of propositional implication. Inf. Process. Lett. 109(18), 1071–1077 (2009)

    MathSciNet  Article  Google Scholar 

  8. Blasio, C., Caleiro, C., Marcos, J.: What is a logical theory? On theories containing assertions and denials. Synthese. (2019)

  9. Bonzio, S., Moraschini, T., Baldi, M.: Logics of left variable inclusion and płonka sums of matrices. Arch. Math. Logic 60, 1–28 (2020)

    MATH  Google Scholar 

  10. Caleiro, C., Marcelino, S.: Analytic calculi for monadic PNmatrices. In: Logic, Language, Information, and Computation (WoLLIC 2019), volume 11541 of LNCS, pp. 84–98. Springer, (2019)

  11. Caleiro, C., Marcelino, S.: On axioms and rexpansions. In: Outstanding Contributions to Logic - Arnon Avron on Semantics and Proof Theory of Non-Classical Logics. Springer, in print

  12. Caleiro, C., Marcelino, S., Filipe, P.: Infectious semantics and analytic calculi for even more inclusion logics. In: IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL), pp. 224–229 (2020)

  13. Caleiro, C., Marcelino, S., Marcos, J.: Combining fragments of classical logic: when are interaction principles needed? Soft Comput. 23(7), 2213–2231 (2019)

    Article  Google Scholar 

  14. Caleiro, C., Marcelino, S., Rivieccio, U.: Characterizing finite-valuedness. Fuzzy Sets Syst. 345, 113–125 (2018)

    MathSciNet  Article  Google Scholar 

  15. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Taming paraconsistent (and Other) logics: an algorithmic approach. ACM Trans. Comput. Logic 16(1), 5:1–5:23 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications. (2007)

  17. Coniglio, M., Golzio, A.: Swap structures semantics for Ivlev-like modal logics. Soft Comput. 23(7), 2243–2254 (2019)

    Article  Google Scholar 

  18. Font, J.: Abstract Algebraic Logic - An Introductory Textbook. College Publications, London (2016)

    MATH  Google Scholar 

  19. Gabbay, D.: Fibring Logics, volume 38 of Oxford Logic Guides. Clarendon Press, (1999)

  20. Humberstone, L.: The Connectives. MIT Press, Cambridge (2011)

    Book  Google Scholar 

  21. Jorge, J., Holik, F.: Non-deterministic semantics for quantum states. Entropy 22(2), 156 (2020)

    MathSciNet  Article  Google Scholar 

  22. Marcelino, S., Caleiro, C.: Disjoint fibring of non-deterministic matrices. In: Logic, Language, Information, and Computation (WoLLIC 2017), pp. 242–255, (2017)

  23. Marcelino, S., Caleiro, C.: Axiomatizing non-deterministic many-valued generalized consequence relations. Synthese. (2019)

  24. Odintsov, S.: lOn the representation of N4-lattices. Stud. Logica 76, 385–405 (2004)

    Article  Google Scholar 

  25. Post, E.: On The Two-Valued Iterative Systems of Mathematical Logic. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  26. Rasga, J., Sernadas, C., Mateus, P., Sernadas, A.: Decision and optimization problems in the unreliable-circuit logic. Logic J. IGPL 25(3), 283–308 (2017)

    MathSciNet  Article  Google Scholar 

  27. Rautenberg, W.: 2-element matrices. Stud. Logica 40(4), 315–353 (1981)

    MathSciNet  Article  Google Scholar 

  28. Rinaldia, D., Schustera, P., Wesse, D.: Eliminating disjunctions by disjunction elimination. Indag. Math. 29(1), 226–259 (2018)

    MathSciNet  Article  Google Scholar 

  29. Rivieccio, U.: Implicative twist-structures. Algebra Universalis 71, 155–186 (2014)

    MathSciNet  Article  Google Scholar 

  30. Scott, D.: Completeness and axiomatizability in many-valued logic. In: Proceedings of the Tarski Symposium, volume XXV of Proceedings of Symposia in Pure Mathematics, pp. 411–435. American Mathematical Society (1974)

  31. Sernadas, A., Rasga, J., Sernadas, C., Mateus, P.: Approximate reasoning about logic circuits with single-fan-out unreliable gates. J. Logic Comput. 24(5), 1023–1069 (2014)

    MathSciNet  Article  Google Scholar 

  32. Sernadas, A., Sernadas, C., Caleiro, C.: Fibring of logics as a categorial construction. J Logic Comput. 9(2), 149–179 (1999)

    MathSciNet  Article  Google Scholar 

  33. Sernadas, A., Sernadas, C., Rasga, J.: On meet-combination of logics. J. Logic Comput. 22(6), 1453–1470 (2011)

    MathSciNet  Article  Google Scholar 

  34. Shoesmith, D., Smiley, T.: Multiple-Conclusion Logic. Cambridge University Press, Cambridge (1978)

    Book  Google Scholar 

  35. Wójcicki, R.: Theory of Logical Calculi. Synthese Library. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  36. Wroński, A.: On the cardinality of matrices strongly adequate for the intuitionistic propositional logic. Reports Math. Logic 3, 67–72 (1974)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sérgio Marcelino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

So they cut him to pieces, wrote a thesis

A cranium of deceit, he’s prone to lie and cheat

It’s no wonder – a blunder from down under

Duckbill, watermole, duckmole!

Mr. Bungle, Platypus.

Research funded by FCT/MCTES through national funds and when applicable co-funded by EU under the project UIDB/50008/2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marcelino, S. An Unexpected Boolean Connective. Log. Univers. 16, 85–103 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Boolean-connectives
  • Two-valued logics
  • Generalized truth-functionality
  • Non-deterministic semantics
  • Multiple-conclusion rules
  • Axiomatizability
  • Analytic calculi

Mathematics Subject Classification

  • Primary 03B50
  • Secondary 03B35