Skip to main content

Essential Structure of Proofs as a Measure of Complexity


The essential structure of proofs is proposed as the basis for a measure of complexity of formulas in FOL. The motivating idea was the recognition that distinct theorems can have the same derivation modulo some non essential details. Hence the difficulty in proving them is identical and so their complexity should be the same. We propose a notion of complexity of formulas capturing this property. With this purpose, we introduce the notions of schema calculus, schema derivation and description complexity of a schema formula. Based on these concepts we prove general robustness results that relate the complexity of introducing a logical constructor with the complexity of the component schema formulas as well as the complexity of a schema formula across different schema calculi.

This is a preview of subscription content, access via your institution.


  1. 1.

    Blackburn, P., van Benthem, J.F.A.K.: Modal logic: a semantic perspective. In: Blackburn, P., van Benthem, J.F.A.K., Wolter, F. (eds.) Handbook of Modal Logic, pp. 173–204. Elsevier Science, Amsterdam (2006)

    Google Scholar 

  2. 2.

    Gentzen, G.: The collected papers of Gerhard Gentzen. In: Szabo, M.E. (ed.) Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1969)

    Google Scholar 

  3. 3.

    Jerábek, E.: Proof complexity of intuitionistic implicational formulas. Ann. Pure Appl. Log. 168(1), 150–190 (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Kolmogorov, A.N.: Combinatorial foundations of information theory and the calculus of probabilities. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 38(4(232)), 27–36 (1983)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Krajíček, J.: On the number of steps in proofs. Ann. Pure Appl. Log. 41(2), 153–178 (1989)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Krajíček, J.: Proof complexity. In: European Congress of Mathematics, pp. 221–231. European Mathematical Society (2005)

  7. 7.

    Krajíček, J., Pudlák, P.: The number of proof lines and the size of proofs in first order logic. Arch. Math. Log. 27(1), 69–84 (1988)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Mints, G.E.: Selected Papers in Proof Theory, Volume 3 of Studies in Proof Theory. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  9. 9.

    Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  10. 10.

    Orevkov, V.P.: Complexity of Proofs and their Transformations in Axiomatic Theories. American Mathematical Society, Providence (1993)

    Book  Google Scholar 

  11. 11.

    Parikh, R.J.: Some results on the length of proofs. Trans. Am. Math. Soc. 177, 29–36 (1973)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Prawitz, D.: Natural Deduction. A Proof-Theoretical Study. Acta Universitatis Stockholmiensis. Stockholm Studies in Philosophy, No. 3. Almqvist & Wiksell (1965)

  13. 13.

    Prawitz, D.: On the idea of a general proof theory. Synthese 27, 63–77 (1974)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Rasga, J., Sernadas, C., Sernadas, A.: Preservation of admissible rules when combining logics. Rev. Symb. Log. 9(4), 641–663 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Restall, G.: Normal proofs, cut free derivations and structural rules. Stud. Log. 102(6), 1143–1166 (2014)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Sernadas, C., Rasga, J., Carnielli, W.A.: Modulated fibring and the collapsing problem. J. Symb. Log. 67(4), 1541–1569 (2002)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Thiele, R.: Hilbert’s twenty-fourth problem. Am. Math. Month. 110, 1–24 (2003)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  19. 19.

    Uspensky, V.A.: Kolmogorov and mathematical logic. J. Symb. Log. 57(2), 385–412 (1992)

    MathSciNet  Article  Google Scholar 

Download references


The authors dedicate this work to the memory of Amílcar Sernadas who had the idea for this paper.

Author information



Corresponding author

Correspondence to Cristina Sernadas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by National Funding from FCT - Fundação para a Ciência e a Tecnologia, under the project: UIDB/04561/2020 granted to CMAFcIO (Centro de Matemática, Aplicações Fundamentais e Investigação Operacional) of Universidade de Lisboa and Project: UIDB/EEA/50008/2020 granted to Instituto de Telecomunicações.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramos, J., Rasga, J. & Sernadas, C. Essential Structure of Proofs as a Measure of Complexity. Log. Univers. 14, 209–242 (2020).

Download citation


  • Description complexity
  • Schema calculus
  • Schema derivation
  • Uniform and non-uniform robustness

Mathematics Subject Classification

  • 03F20
  • 03F03
  • 03B10
  • 03B22