Skip to main content
Log in

Essential Structure of Proofs as a Measure of Complexity

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

The essential structure of proofs is proposed as the basis for a measure of complexity of formulas in FOL. The motivating idea was the recognition that distinct theorems can have the same derivation modulo some non essential details. Hence the difficulty in proving them is identical and so their complexity should be the same. We propose a notion of complexity of formulas capturing this property. With this purpose, we introduce the notions of schema calculus, schema derivation and description complexity of a schema formula. Based on these concepts we prove general robustness results that relate the complexity of introducing a logical constructor with the complexity of the component schema formulas as well as the complexity of a schema formula across different schema calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackburn, P., van Benthem, J.F.A.K.: Modal logic: a semantic perspective. In: Blackburn, P., van Benthem, J.F.A.K., Wolter, F. (eds.) Handbook of Modal Logic, pp. 173–204. Elsevier Science, Amsterdam (2006)

    Google Scholar 

  2. Gentzen, G.: The collected papers of Gerhard Gentzen. In: Szabo, M.E. (ed.) Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1969)

    Google Scholar 

  3. Jerábek, E.: Proof complexity of intuitionistic implicational formulas. Ann. Pure Appl. Log. 168(1), 150–190 (2017)

    Article  MathSciNet  Google Scholar 

  4. Kolmogorov, A.N.: Combinatorial foundations of information theory and the calculus of probabilities. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 38(4(232)), 27–36 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Krajíček, J.: On the number of steps in proofs. Ann. Pure Appl. Log. 41(2), 153–178 (1989)

    Article  MathSciNet  Google Scholar 

  6. Krajíček, J.: Proof complexity. In: European Congress of Mathematics, pp. 221–231. European Mathematical Society (2005)

  7. Krajíček, J., Pudlák, P.: The number of proof lines and the size of proofs in first order logic. Arch. Math. Log. 27(1), 69–84 (1988)

    Article  MathSciNet  Google Scholar 

  8. Mints, G.E.: Selected Papers in Proof Theory, Volume 3 of Studies in Proof Theory. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  9. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  10. Orevkov, V.P.: Complexity of Proofs and their Transformations in Axiomatic Theories. American Mathematical Society, Providence (1993)

    Book  Google Scholar 

  11. Parikh, R.J.: Some results on the length of proofs. Trans. Am. Math. Soc. 177, 29–36 (1973)

    Article  MathSciNet  Google Scholar 

  12. Prawitz, D.: Natural Deduction. A Proof-Theoretical Study. Acta Universitatis Stockholmiensis. Stockholm Studies in Philosophy, No. 3. Almqvist & Wiksell (1965)

  13. Prawitz, D.: On the idea of a general proof theory. Synthese 27, 63–77 (1974)

    Article  MathSciNet  Google Scholar 

  14. Rasga, J., Sernadas, C., Sernadas, A.: Preservation of admissible rules when combining logics. Rev. Symb. Log. 9(4), 641–663 (2016)

    Article  MathSciNet  Google Scholar 

  15. Restall, G.: Normal proofs, cut free derivations and structural rules. Stud. Log. 102(6), 1143–1166 (2014)

    Article  MathSciNet  Google Scholar 

  16. Sernadas, C., Rasga, J., Carnielli, W.A.: Modulated fibring and the collapsing problem. J. Symb. Log. 67(4), 1541–1569 (2002)

    Article  MathSciNet  Google Scholar 

  17. Thiele, R.: Hilbert’s twenty-fourth problem. Am. Math. Month. 110, 1–24 (2003)

    Article  MathSciNet  Google Scholar 

  18. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  19. Uspensky, V.A.: Kolmogorov and mathematical logic. J. Symb. Log. 57(2), 385–412 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors dedicate this work to the memory of Amílcar Sernadas who had the idea for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Sernadas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by National Funding from FCT - Fundação para a Ciência e a Tecnologia, under the project: UIDB/04561/2020 granted to CMAFcIO (Centro de Matemática, Aplicações Fundamentais e Investigação Operacional) of Universidade de Lisboa and Project: UIDB/EEA/50008/2020 granted to Instituto de Telecomunicações.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, J., Rasga, J. & Sernadas, C. Essential Structure of Proofs as a Measure of Complexity. Log. Univers. 14, 209–242 (2020). https://doi.org/10.1007/s11787-020-00251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-020-00251-4

Keywords

Mathematics Subject Classification

Navigation