Introducing H, an Institution-Based Formal Specification and Verification Language


This is a short survey on the development of the formal specification and verification language H with emphasis on the scientific part. H is a modern highly expressive language solidly based upon advanced mathematical theories such as the internalisation of Kripke semantics within institution theory.

This is a preview of subscription content, access via your institution.


  1. 1.

    In examples \( Dom \,:\; Sign ^{\mathrm {op}} \rightarrow \mathbf {C\!A\!T}\) is always a functor that is “weaker” than \( Mod \) in the sense that it interprets less structure.

  2. 2.

    “Programming” here is meant is a broader sense that includes the design of the architecture of the implementation and the writing of the code.


  1. 1.

    Abrial, J.-R., Börger, E., Langmaack, H. (eds.): Formal Methods for Industrial Applications – Specifying and Programming the Steam Boiler Control, volume 1165 of LNCS. Springer, New York (1996)

    MATH  Google Scholar 

  2. 2.

    Areces, C., Blackburn, P., Delany, S.R.: Bringing them all together. J. Log. Comput. 11, 657–669 (2001)

    MATH  Google Scholar 

  3. 3.

    Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P., Sannella, D., Tarlecki, A.: CASL: the common algebraic specification language. Theor. Comput. Sci. 286(2), 153–196 (2002)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Log. J. IGPL 8(3), 339–365 (2000)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Blackburn, P., Seligman, J.: Hybrid languages. J. Log. Lang. Inf. 4(3), 251–272 (1995)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Braüner, T.: Hybrid Logic and its Proof-Theory, Volume 37 of Applied Logic Series. Springer, New York (2011)

    Google Scholar 

  7. 7.

    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. Lecture Notes in Computer Science, vol. 4350. Springer, New York (2007)

  8. 8.

    Codescu, M.: Hybridisation of institutions in Hets. In: CALCO 2019, 8th Conference on Algebra and Coalgebra in Computer Science (2019)

  9. 9.

    Diaconescu, R.: Extra theory morphisms for institutions: logical semantics for multi-paradigm languages. Appl. Categ. Struct., 6(4), 427–453 (1998). A preliminary version appeared as JAIST Technical Report IS-RR-97-0032F in 1997

  10. 10.

    Diaconescu, R.: Grothendieck institutions. Appl. Categ. Struct., 10(4), 383–402 (2002). Preliminary version appeared as IMAR Preprint 2-2000, ISSN 250-3638, (February 2000)

  11. 11.

    Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  12. 12.

    Diaconescu, R.: Quasi-boolean encodings and conditionals in algebraic specification. J. Log. Algebr. Program. 79(2), 174–188 (2010)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Diaconescu, R.: From universal logic to computer science, and back. In: Ciobanu, G., Méry, D. (ed.) Theoretical Aspects of Computing—ICTAC 2014, Volume 8687 of Lecture Notes in Computer Science. Springer, New York (2014)

  14. 14.

    Diaconescu, R.: Quasi-varieties and initial semantics in hybridized institutions. J. Log. Comput. 26(3), 855–891 (2016)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Diaconescu, R.: Implicit Kripke semantics and ultraproducts in stratified institutions. J. Log. Comput. 27(5), 1577–1606 (2017)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Diaconescu, R., Ţuţu, I.: On the algebra of structured specifications. Theor. Comput. Sci. 412(28), 3145–3174 (2011)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Diaconescu, R., Futatsugi, K. : CafeOBJ Report: The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic Specification, Volume 6 of AMAST Series in Computing. World Scientific, Singapore (1998)

  18. 18.

    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Huet, G., Plotkin, G. (eds.) Logical Environments, Cambridge, 1993, pp. 83–130. Proceedings of a Workshop held in Edinburgh, Scotland (1991)

  19. 19.

    Diaconescu, R., Madeira, A.: Encoding hybridized institutions into first order logic. Math. Struct. Comput. Sci. 26, 745–788 (2016)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Diaconescu, R., Stefaneas, P.: Ultraproducts and possible worlds semantics in institutions. Theor. Comput. Sci. 379(1), 210–230 (2007)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39(1), 95–146 (1992)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Goguen, J., Roşu, G.: Institution morphisms. Form. Asp. Comput. 13, 274–307 (2002)

    MATH  Google Scholar 

  23. 23.

    Grothendieck, A.: Catégories fibrées et descente. In: Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébraique du Bois-Marie 1960/61, Exposé VI. Institut des Hautes Études Scientifiques, 1963. Reprinted in Lecture Notes in Mathematics, Volume 224, pp. 145–94. Springer, New York (1971)

    Google Scholar 

  24. 24.

    Kripke, S.: A completeness theorem in modal logic. J. Symb. Log. 24, 1–15 (1959)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Madeira, A.: Foundations and techniques for software reconfigurability. PhD thesis, Universidades do Minho, Aveiro and Porto (Joint MAP-i Doctoral Programme) (2014)

  26. 26.

    Martins, M.-A., Madeira, A., Diaconescu, R., Barbosa, L.: Hybridization of institutions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) Algebra and Coalgebra in Computer Science, Volume 6859 of Lecture Notes in Computer Science, pp. 283–297. Springer, New York (2011)

    Google Scholar 

  27. 27.

    Meseguer, J.: General logics. In: Ebbinghaus, H.-D., et al. (ed.) Proceedings, Logic Colloquium, 1987, pp. 275–329. North-Holland (1989)

  28. 28.

    Mossakowski, T., Maeder, C., Lütich, K.: The heterogeneous tool set. Lect. Notes Comput. Sci. 4424, 519–522 (2007)

    Google Scholar 

  29. 29.

    Mossakowski, T.: Different types of arrow between logical frameworks. In: Meyer auf der Heide, F., Monien, B. (eds.) Proceedings of ICALP 96, Volume 1099 of Lecture Notes in Computer Science, pp. 158–169. Springer, New York (1996)

    Google Scholar 

  30. 30.

    Mossakowski, Till: Comorphism-based Grothendieck logics. In K. Diks and W. Rytter, editors, Mathematical foundations of computer science, volume 2420 of Lecture Notes in Computer Science, pages 593–604. Springer, (2002)

  31. 31.

    Mossakowski, T., Codescu, M., Neuhaus, F., Kutz, O.: The distributed ontology, modeling and specification language - dol. In: Buchsbaum, A., Koslow, A. (eds.) The Road to Universal Logic. Birkhauser, Cham (2015)

    Google Scholar 

  32. 32.

    Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Inf. Comput. 93(2), 263–332 (1991)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Prior, A.N.: Past, Present and Future. Oxford University Press, Oxford (1967)

    MATH  Google Scholar 

  34. 34.

    Riazonov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2–3), 91–110 (2002)

    MATH  Google Scholar 

  35. 35.

    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specifications and Formal Software Development. Springer, New York (2012)

    MATH  Google Scholar 

  36. 36.

    Schulz, S.: System description: E 1.8. In: Proceedings of the 19th conference on Logic Programming and Autamated Reasoning (LPAR), Volume 8312 of LNCS, pp. 477–483 (2013)

    Google Scholar 

  37. 37.

    Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Owe, O., Dahl, O.-J. (eds.) Recent Trends in Data Type Specification, Volume 1130 of Lecture Notes in Computer Science, pp. 478–502. Springer, New York (1996)

    Google Scholar 

  38. 38.

    Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., van Rijke, M. (eds.) Proceedings, International Conference on Frontiers of Combining Systems (FroCoS’98), pp. 337–360. Research Studies Press (2000)

  39. 39.

    Tarski, A.: The semantic conception of truth. Philos. Phenomenol. Res. 4, 13–47 (1944)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Ţuţu, I., Chiriţă, C.E., Lopes, A., Fiadeiro, J.L.: Logical support for bike-sharing system design. In: From Software Engineering to Formal Methods and Tools, and Back, Volume 11865 of Lecture Notes in Computer Science. Springer, New York (2019)

    Google Scholar 

  41. 41.

    van Bentham, J.: Modal Logic and Classical Logic. Humanities Press, New York (1988)

    Google Scholar 

  42. 42.

    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M, Wischnewski, P.: SPASS version 3.5. In: Automated Deduction, Volume 5663 of LNCS, pp. 140–145 (2009)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Răzvan Diaconescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diaconescu, R. Introducing H, an Institution-Based Formal Specification and Verification Language. Log. Univers. 14, 259–277 (2020).

Download citation


  • Institution theory
  • modal logic
  • formal specification

Mathematics Subject Classification

  • Primary 03C95
  • Secondary 03C98
  • 68N30