Skip to main content

Hintikka and the Functions of Logic


Jaakko Hintikka (1929–2015) points out the power of Skolem functions to affect both what there is and what we know. There is a tension in his presupposition that these functions actually extend the realm of logic. He claims to have resolved the tension by “reconstructing constructivism” along epistemological lines, instead of by a typical ontological construction; however, after the collapse of the distinction between first and second order, that resolution is not entirely satisfactory. Still, it does throw light on the conceptual analysis Hintikka proposes.

This is a preview of subscription content, access via your institution.


  1. Auxier, R.E., Hahn, L.E. (eds.): The Philosophy of Jaakko Hintikka. In: The Library of Living Philosophers, vol. XXX. Open Court, Chicago and La Salle (2006)

  2. Barwise, J.: On branching quantifiers in English. J. Philos. Log. 8, 47–80 (1979)

    MathSciNet  Article  MATH  Google Scholar 

  3. Cook, R., Shapiro, S.: Hintikka’s revolution: the principles of mathematics revisited. Br. J. Philos. Sci. 49, 309–316 (1998)

    Article  Google Scholar 

  4. Dummett, M.: Truth and Other Enigmas. Duckworth, London (1978)

    Google Scholar 

  5. Dummett, M.: The Seas of Language. Clarendon, Oxford (1993)

    MATH  Google Scholar 

  6. Enderton, H.B.: Finite partially-ordered quantifiers. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 16, 393–397 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  7. Fine, T.L.: Theories of Probability: An Examination of Foundations. Academic Press, New York (1973)

    MATH  Google Scholar 

  8. Frankfurt, H.G. (ed.): Leibniz: A Collection of Critical Essays. Anchor Books, Garden City (1972)

  9. Gödel, K.: Russell’s mathematical logic. In: Schilpp, P.A. (ed.) The Philosophy of Bertrand Russell. Library of Living Philosophers, vol. V, pp. 123–153. Northwestern University, Evanston (1944). Reprinted in: Feferman, S., et al. (eds.) Collected Works. Volume II. Publications 1938–1974, pp. 102–141. Oxford University Press, Oxford and New York (1990)

  10. Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods, pp. 167–183. Pergamon Press, Oxford; Warsaw, PAN (1961)

  11. Hintikka, J., Kulas, J.: The Game of Language: Studies in Game-Theoretical Semantics and Its Applications. D. Reidel, Dordrecht and Boston (1983)

  12. Hintikka, J.: Knowledge and Belief. In: An Introduction to the Logic of the Two Notions. Cornell University Press, Ithaca and London (1962)

  13. Hintikka, J.: Leibniz on plenitude, relations, and the ‘reign of law’. In: [8], pp. 155–190 (1972)

  14. Hintikka, J.: Logic, language-games, and information. In: Kantian Themes in the Philosophy of Logic. Clarendon, Oxford (1973)

  15. Hintikka, J.: Models for modalities. In: Selected Essays. D. Reidel, Dordrecht (1969)

  16. Hintikka, J.: Form and content in quantification theory. Acta Philos. Fennica 8, 7–55 (1955)

    MathSciNet  MATH  Google Scholar 

  17. Hintikka, J.: Quantifiers vs. quantification theory. Linguist. Inq. 5, 153–177 (1974)

    MATH  Google Scholar 

  18. Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  19. Hintikka, J.: Which mathematical logic is the logic of mathematics? Log. Univers. 6, 459–475 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  20. Hintikka, J., Sandu, G.: Game-theoretical semantics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language. Elsevier, New York (1996)

    Google Scholar 

  21. Hintikka, J., Vilkko, R.: Existence and predication from Aristotle to Frege. Philos. Phenomenolog. Res. 73, 359–377 (2006)

    Article  Google Scholar 

  22. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  23. Hodges, W.: Compositional semantics for a language of imperfect information. Log. J. IGPL 5, 539–563 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  24. Hodges, W.: Review of the principles of mathematics revisited. J. Log. Lang. Inf. 6, 457–460 (1997)

    Article  Google Scholar 

  25. Ishiguro, H.: Leibniz’s theory of the ideality of relations. In: [8], pp. 191–213 (1972)

  26. Kanamori, A.: The empty set, the singleton, and the ordered pair. Bull. Symb. Log. 9, 273–298 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  27. Martin-Löf, P.: The definition of random sequences. Inf. Control 6, 602–619 (1966)

    MathSciNet  Article  MATH  Google Scholar 

  28. Martin-Löf, P.: On the notion of randomness. In: Kino, A., Myhill, J., Vesley, R.E. (eds.) Intuitionism and Proof Theory. North-Holland, Amsterdam (1970)

    Google Scholar 

  29. Quine, W.V.: Reply to Professor Marcus (1962). Reprinted as Essay 16. In: The Ways of Paradox and Other Essays, Rev. edn, pp. 177–184. Harvard University Press, Cambridge (1976)

  30. Quine, W.V.: Word and Object. MIT Press, Cambridge (1960)

    MATH  Google Scholar 

  31. Quine, W.V.: Replies. In: Davidson, D., Hintikka, J. (eds.) Words and Objections: Essays on the Work of W. V. Quine. D. Reidel, Dordrecht (1969)

    Google Scholar 

  32. Quine, W.V.: Philosophy of Logic, 2nd edn. Harvard University Press, Cambridge (1986)

    Google Scholar 

  33. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  34. Tait, W.: The Provenance of Pure Reason: Essays in the Philosophy of Mathematics and Its History. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  35. Tennant, N.: Games some people would have all of us play. Philos. Math. 3(6), 90–115 (1998)

    Article  Google Scholar 

  36. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  37. Velleman, D.J.: Review of the principles of mathematics revisited. Mind 108, 170–179 (1999)

    Google Scholar 

  38. Walkoe Jr., W.J.: Finitely partially-ordered quantification. J. Symb. Log. 35, 535–555 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  39. Wang, H.: A survey of Skolem’s work in logic. In: Skolem, T., Fenstad, J.E. (eds.) Selected Works in Logic, pp. 17–52. Scandinavian University Books, Oslo (1970)

    Google Scholar 

  40. Wang, H.: From Mathematics to Philosophy. Humanities Press, New York (1974)

    MATH  Google Scholar 

  41. Wang, H.: A Logical Journey: From Gödel to Philosophy. MIT Press, Cambridge (1996)

    Google Scholar 

  42. Webb, J.C.: Hintikka on Aristotelean constructions, Kantian intuitions, and Peircean theorems. In: [1], pp. 195–301 (2006)

  43. Woodin, W.H.: In search of ultimate-\(L\): The 19th midrasha mathematicae lectures. Bull. Symb. Log. 23, 1–109 (2017)

    MathSciNet  Article  MATH  Google Scholar 

Download references


Thanks very much to an anonymous reviewer and to the editor of the Hintikka special in the Logica Universalis, Ahti-Veikko Pietarinen. Thanks to Akihiro Kanamori, Charles Parsons, and Juliet Floyd. Thanks to Trevor Link. Thanks also to Brian Kiniry, Alex Taylor, Timothy Shugrue, and Connie Lai, and to Kelly Link and Joanne Montgomery Link, as well. Errors are mine.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Montgomery Link.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Link, M. Hintikka and the Functions of Logic. Log. Univers. 13, 203–217 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Mathematics Subject Classification

  • Primary 03A05
  • Secondary 00A30


  • Logic
  • foundations of mathematics
  • Skolem function
  • dependence
  • quantification
  • branching quantifier
  • game theoretical semantics