Skip to main content

Canonical Extensions and Kripke–Galois Semantics for Non-distributive Logics


This article presents an approach to the semantics of non-distributive propositional logics that is based on a lattice representation (and duality) theorem that delivers a canonical extension of the lattice. Our approach supports both a plain Kripke-style semantics and, by restriction, a general frame semantics. Unlike the framework of generalized Kripke frames (RS-frames), the semantic approach presented in this article is suitable for modeling applied logics (such as temporal, or dynamic), as it respects the intended interpretation of the logical operators. This is made possible by restricting admissible interpretations.

This is a preview of subscription content, access via your institution.


  1. 1.

    Allwein, G., Hartonas, C.: Duality for bounded lattices. Technical Report IULG-93-25, Indiana University Logic Group (1993)

  2. 2.

    Bimbó, K., Dunn, J.M.: Generalized Galois Logics. Relational Semantics of Nonclassical Logical Calculi, volume 188. CSLI Lecture Notes. CSLI, Stanford (2008)

    MATH  Google Scholar 

  3. 3.

    Chernilovskaya, A., Gehrke, M., van Rooijen, L.: Generalised Kripke semantics for the Lambek–Grishin calculus. Logic J. IGPL 20(6), 1110–1132 (2012)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-distributive logics. arXiv:1603.08515v2 (2016)

  5. 5.

    Craig, A., Gouveia, M.J., Haviar, M.: TiRS graphs and TiRS frames: a new setting for duals of canonical extensions. Algerba Univers. 74(1–2), 123–138 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Craig, A., Haviar, M., Priestley, H.: A fresh perspective on canonical extensions for bounded lattices. Appl. Categ. Struct. 21(6), 725–749 (2013)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Dunn, J.M.: Gaggle theory: an abstraction of Galois connections and residuation with applications to negations and various logical operations. In: Logics in AI, Proceedings of European Workshop JELIA 1990, LNCS 478, pp. 31–51 (1990)

  8. 8.

    Gehrke, M.: Generalized Kripke frames. Stud. Log. 84(2), 241–275 (2006)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 238, 345–371 (2001)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hartonas, C.: Duality for lattice-ordered algebras and for normal algebraizable logics. Stud. Log. 58, 403–450 (1997)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Hartonas, C.: First-order frames for orthomodular quantum logic. J. Appl. Non Class. Log. 26(1), 69–80 (2016)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Hartonas, C.: Modal and temporal extensions of non-distributive propositional logics. Oxf. Log. J. IGPL 24(2), 156–185 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Hartonas, C.: Reasoning with incomplete information in generalized Galois logics without distribution: the case of negation and modal operators. In: Bimbó, K. (ed.) J. Michael Dunn on Information Based Logics. Series Outstanding Contributions to Logic, pp. 303–336. Springer, Cham (2016)

    Google Scholar 

  14. 14.

    Hartonas, C.: Kripke-Galois frames and their logics. IFCoLog J. Log. Appl. 4(3), 647–730 (2017)

    Google Scholar 

  15. 15.

    Hartonas, C.: Order-dual relational semantics for non-distributive propositional logics. Oxf. Log. J. IGPL 25(2), 145–182 (2017)

    MathSciNet  Google Scholar 

  16. 16.

    Hartonas, C.: Relational representation of operators in canonical extensions of normal lattice expansions (2017)

  17. 17.

    Hartonas, C.: Order-dual relational semantics for non-distributive propositional logics: a general framework. J. Philos. Logic 47(1), 67–94 (2018)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Hartonas, C.: Discrete duality for lattices with modal operators. (2018).

  19. 19.

    Hartonas, C.: Stone duality for lattice expansions. Oxf. Log. J. IGPL (2018).

    MathSciNet  Article  Google Scholar 

  20. 20.

    Hartonas, C., Dunn, J.M.: Duality theorems for partial orders, semilattices, Galois connections and lattices. Technical Report IULG-93-26, Indiana University Logic Group (1993)

  21. 21.

    Hartonas, C., Dunn, J.M.: Stone duality for lattices. Algebra Univers. 37, 391–401 (1997)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Hartonas, C., Orlowska, E.: Representations of lattices with modal operators in two-sorted frames. (2017).

  23. 23.

    Hartung, G.: A topological representation for lattices. Algebra Univers. 29, 273–299 (1992)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Jónsson, B., Tarski, A.: Boolean algebras with operators I. Am. J. Math. 73, 891–939 (1951)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Jónsson, B., Tarski, A.: Boolean algebras with operators II. Am. J. Math. 74, 8127–162 (1952)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Ploščica, M.: A natural representation of bounded lattices. Tatra Mt. Math. Publ. 5, 75–88 (1995)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Priestley, H.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Urquhart, A.: A topological representation of lattices. Algebra Univers. 8, 45–58 (1978)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Chrysafis Hartonas.

Additional information

Presented at Unilog’18, Vichy, France, as the winner of the Aristotle Logic Prize and co-runner for the Universal Logic Prize 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hartonas, C. Canonical Extensions and Kripke–Galois Semantics for Non-distributive Logics. Log. Univers. 12, 397–422 (2018).

Download citation


  • Canonical lattice extension
  • Logic of lattice expansions
  • Kripke frames
  • Kripke–Galois frames
  • Generalized Kripke frames
  • Modal lattices
  • Implicative lattices

Mathematics Subject Classification

  • 03B45
  • 03B47
  • 03B60
  • 03G10