Universal Logic: Evolution of a Project

Abstract

We discuss the origin and development of the universal logic project. We describe in particular the structure of UNILOG, a series of events created for promoting the universal logic project, with a school, a congress, a secret speaker and a contest. We explain how the contest has evolved into a session of logic prizes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Beziau, J.-Y.: Universal logic. In: Childers, T., Majer, O. (eds.) Logica94—Proceedings of the 8th International Symposium, pp. 73–93. Prague (1994)

  2. 2.

    Beziau, J.-Y.: Recherches sur la logique universelle. Ph.D., Department of Mathematics, University of Paris 7 (1995)

  3. 3.

    Beziau, J.-Y.: From paraconsistent to universal logic. Sorites 12, 5–32 (2001)

    MathSciNet  Google Scholar 

  4. 4.

    Beziau, J.-Y.: From consequence operator to universal logic: a survey of general abstract logic. In: Logica Universalis: Towards a General Theory of Logic, pp. 3–17. Birkhäuser, Basel (2005)

  5. 5.

    Beziau, J.-Y.: 13 Questions about universal logic. Bull. Sect. Logic 35, 133–150 (2006)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Beziau, J.-Y.: What is a logic? Towards axiomatic emptiness. Log. Investig. 16, 272–279 (2010)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Beziau, J.-Y.: Logic is not logic. Abstrata 6, 73–102 (2010)

    Google Scholar 

  8. 8.

    Beziau, J.-Y.: The relativity and universality of logic. Synthese—Special Issue Istvan Németi 70th Birthday, vol. 192, pp. 1929–1954 (2015)

  9. 9.

    Beziau, J.-Y.: Is the principle of contradiction a consequence of \(x^{2}=x\)? Logica Universalis 12 (2018). https://doi.org/10.1007/s11787-018-0188-5

  10. 10.

    Bhattacharjee, R., Chakraborty, M.K., Choudhury, L.: Venn diagram with names of individuals and their absence: a non-classical diagram logic. Logica Universalis 12 (2018). https://doi.org/10.1007/s11787-018-0186-7

  11. 11.

    Birkhoff, G.: Universal algebra. In: Rota, G.-C., Oliveira, J.S. (eds.) Selected Papers on Algebra and Topology by Garret Birkhoff, pp. 111–115. Birkhäuser, Basel (1987)

    Google Scholar 

  12. 12.

    Bourbaki, N.: L’architecture des mathématiques. In: Le Lionnais, F. (ed.) Les grands courants de la pensée mathématique, Cahiers du Sud, pp. 35–48 (1948). English Translation: The Architecture of Mathematics, The American Mathematical Monthly, vol. 57, pp. 221–232 (1950)

  13. 13.

    Chatti, S.: Arabic Logic from al-Farabi to Averroes. Birkhäuser, Basel (2018)

    Google Scholar 

  14. 14.

    Chentsov, A., Nikitchenko, M.: Composition-nominative logics as institutions. Logica Universalis 12 (2018). https://doi.org/10.1007/s11787-018-0191-x

  15. 15.

    Corcoran, J.: Aristotle’s prototype rule-based underlying logic. Logica Universalis 12 (2018). https://doi.org/10.1007/s11787-018-0189-4

  16. 16.

    da Costa, N.C.A., Beziau, J.-Y., Bueno, O.A.S.: Paraconsistent logic in a historical perspective. Logique et Analyse 150–152, 111–125 (1995)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser, Basel (2008)

    Google Scholar 

  18. 18.

    Garrido, A., Wybraniec-Skardowska, U. (eds.): The Lvov-Warsaw School—Past and Present. Birkhäuser, Basel (2018)

  19. 19.

    Hodges, W.: Two early Arabic applications of model-theoretic consequence. Logica Universalis 12 (2018). https://doi.org/10.1007/s11787-018-0187-6

  20. 20.

    Max, I.: A molecular logic of chords and their internal harmony. Logica Universalis 12 (2018). https://doi.org/10.1007/s11787-018-0193-8

  21. 21.

    Mruczek-Nasieniewska, K., Nasieniewski, M.: A characterisation of some Z-like logics. Logica Universalis 12 (2018). https://doi.org/10.1007/s11787-018-0184-9

  22. 22.

    Pasquali, F.: On a generalization of equilogical spaces. Logica Universalis 12 (2018). https://doi.org/10.1007/s11787-018-0192-9

  23. 23.

    Petrukhin, Y.: Natural deduction for post’s logics and their duals. Logica Universalis 12 (2018). https://doi.org/10.1007/s11787-018-0190-y

  24. 24.

    Poizat, B., Yeshkeyev, A.: Positive Jonsson theories. Logica Universalis 12 (2018). https://doi.org/10.1007/s11787-018-0185-8

  25. 25.

    Sylvester, J.J.: Lectures on the principles of universal algebra. Am. J. Math. 6, 270–286 (1884)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Tarski, A.: Logic, Semantics, Metamathematics, 2nd edition prestend by J. Corcoran. Hackett, Indianapolis (1983)

  27. 27.

    Whitehead, A.N.: A Treatise on Universal Algebra. Cambridge University Press, Cambridge (1898)

    Google Scholar 

  28. 28.

    Woleński, J.: Adolf Lindenbaum. Internet Encyclopedia of Philosophy. www.iep.utm.edu/lindenba (2018)

  29. 29.

    Zygmunt, J., Purdy, R.: Adolf lindenbaum: notes on his life with bibliography and selected references. Logica Universalis 8, 285–320 (2014)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Beziau.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beziau, J. Universal Logic: Evolution of a Project. Log. Univers. 12, 1–8 (2018). https://doi.org/10.1007/s11787-018-0194-7

Download citation

Mathematics Subject Classification

  • Primary 03B22
  • Secondary 03B53
  • 03C05
  • 03C95
  • 03F03

Keywords

  • Universal logic
  • Aristotle
  • Boole
  • Tarski
  • paraconsistent logic
  • model theory
  • proof theory