Advertisement

Logica Universalis

, Volume 12, Issue 1–2, pp 1–8 | Cite as

Universal Logic: Evolution of a Project

  • Jean-Yves Beziau
Article

Abstract

We discuss the origin and development of the universal logic project. We describe in particular the structure of UNILOG, a series of events created for promoting the universal logic project, with a school, a congress, a secret speaker and a contest. We explain how the contest has evolved into a session of logic prizes.

Keywords

Universal logic Aristotle Boole Tarski paraconsistent logic model theory proof theory 

Mathematics Subject Classification

Primary 03B22 Secondary 03B53 03C05 03C95 03F03 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beziau, J.-Y.: Universal logic. In: Childers, T., Majer, O. (eds.) Logica94—Proceedings of the 8th International Symposium, pp. 73–93. Prague (1994)Google Scholar
  2. 2.
    Beziau, J.-Y.: Recherches sur la logique universelle. Ph.D., Department of Mathematics, University of Paris 7 (1995)Google Scholar
  3. 3.
    Beziau, J.-Y.: From paraconsistent to universal logic. Sorites 12, 5–32 (2001)MathSciNetGoogle Scholar
  4. 4.
    Beziau, J.-Y.: From consequence operator to universal logic: a survey of general abstract logic. In: Logica Universalis: Towards a General Theory of Logic, pp. 3–17. Birkhäuser, Basel (2005)Google Scholar
  5. 5.
    Beziau, J.-Y.: 13 Questions about universal logic. Bull. Sect. Logic 35, 133–150 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Beziau, J.-Y.: What is a logic? Towards axiomatic emptiness. Log. Investig. 16, 272–279 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Beziau, J.-Y.: Logic is not logic. Abstrata 6, 73–102 (2010)Google Scholar
  8. 8.
    Beziau, J.-Y.: The relativity and universality of logic. Synthese—Special Issue Istvan Németi 70th Birthday, vol. 192, pp. 1929–1954 (2015)Google Scholar
  9. 9.
    Beziau, J.-Y.: Is the principle of contradiction a consequence of \(x^{2}=x\)? Logica Universalis 12 (2018).  https://doi.org/10.1007/s11787-018-0188-5
  10. 10.
    Bhattacharjee, R., Chakraborty, M.K., Choudhury, L.: Venn diagram with names of individuals and their absence: a non-classical diagram logic. Logica Universalis 12 (2018).  https://doi.org/10.1007/s11787-018-0186-7
  11. 11.
    Birkhoff, G.: Universal algebra. In: Rota, G.-C., Oliveira, J.S. (eds.) Selected Papers on Algebra and Topology by Garret Birkhoff, pp. 111–115. Birkhäuser, Basel (1987)Google Scholar
  12. 12.
    Bourbaki, N.: L’architecture des mathématiques. In: Le Lionnais, F. (ed.) Les grands courants de la pensée mathématique, Cahiers du Sud, pp. 35–48 (1948). English Translation: The Architecture of Mathematics, The American Mathematical Monthly, vol. 57, pp. 221–232 (1950)Google Scholar
  13. 13.
    Chatti, S.: Arabic Logic from al-Farabi to Averroes. Birkhäuser, Basel (2018)Google Scholar
  14. 14.
    Chentsov, A., Nikitchenko, M.: Composition-nominative logics as institutions. Logica Universalis 12 (2018).  https://doi.org/10.1007/s11787-018-0191-x
  15. 15.
    Corcoran, J.: Aristotle’s prototype rule-based underlying logic. Logica Universalis 12 (2018).  https://doi.org/10.1007/s11787-018-0189-4
  16. 16.
    da Costa, N.C.A., Beziau, J.-Y., Bueno, O.A.S.: Paraconsistent logic in a historical perspective. Logique et Analyse 150–152, 111–125 (1995)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser, Basel (2008)zbMATHGoogle Scholar
  18. 18.
    Garrido, A., Wybraniec-Skardowska, U. (eds.): The Lvov-Warsaw School—Past and Present. Birkhäuser, Basel (2018)Google Scholar
  19. 19.
    Hodges, W.: Two early Arabic applications of model-theoretic consequence. Logica Universalis 12 (2018).  https://doi.org/10.1007/s11787-018-0187-6
  20. 20.
    Max, I.: A molecular logic of chords and their internal harmony. Logica Universalis 12 (2018).  https://doi.org/10.1007/s11787-018-0193-8
  21. 21.
    Mruczek-Nasieniewska, K., Nasieniewski, M.: A characterisation of some Z-like logics. Logica Universalis 12 (2018).  https://doi.org/10.1007/s11787-018-0184-9
  22. 22.
    Pasquali, F.: On a generalization of equilogical spaces. Logica Universalis 12 (2018).  https://doi.org/10.1007/s11787-018-0192-9
  23. 23.
    Petrukhin, Y.: Natural deduction for post’s logics and their duals. Logica Universalis 12 (2018).  https://doi.org/10.1007/s11787-018-0190-y
  24. 24.
    Poizat, B., Yeshkeyev, A.: Positive Jonsson theories. Logica Universalis 12 (2018).  https://doi.org/10.1007/s11787-018-0185-8
  25. 25.
    Sylvester, J.J.: Lectures on the principles of universal algebra. Am. J. Math. 6, 270–286 (1884)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tarski, A.: Logic, Semantics, Metamathematics, 2nd edition prestend by J. Corcoran. Hackett, Indianapolis (1983)Google Scholar
  27. 27.
    Whitehead, A.N.: A Treatise on Universal Algebra. Cambridge University Press, Cambridge (1898)zbMATHGoogle Scholar
  28. 28.
    Woleński, J.: Adolf Lindenbaum. Internet Encyclopedia of Philosophy. www.iep.utm.edu/lindenba (2018)
  29. 29.
    Zygmunt, J., Purdy, R.: Adolf lindenbaum: notes on his life with bibliography and selected references. Logica Universalis 8, 285–320 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UFRJ - University of BrazilRio de JaneiroBrazil
  2. 2.CNPq - Brazilian Research CouncilRio de JaneiroBrazil
  3. 3.ENS - Ecole Normale SupérieureParisFrance

Personalised recommendations